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The mathematical models for getting the analytical solutions of gas charging
and discharging processes of gun bore evacuator were formulated based on
thermodynamics and gas equation of state. Three-dimensional transient CFD
simulations were conducted to study the detailed flow behaviour during the gas
charging and discharging processes of the bore evacuator. Based on the mathe-
matical models and the CFD simulation results, a calculation code for eval uat-
ing the bore evacuator performance was developed to aid the bore evacuator
design and thusto improve the efficiency of the bore evacuator.

INTRODUCTION

The gun bore evacuator is apressure vessel surrounding a portion of the gun tube. Dur-
ing firing, asmall part of high pressure propellant gasesis charged and stored in the bore
evacuator. After the projectile exits the muzzle, the high pressure gasesin the bore evacu-
ator discharge towards the muzzle end. The forward flow induces and purges the remain-
ing propellant gases at the breech end.

The performance of bore evacuator is closely related to the gas charging and dischar-
ging processes. The efficiency of bore evacuator can be defined by the amount of induced
mass flow at breech end and the flow duration time. An indicator, mass flow augmenta
tion ratio, is also used to determine the efficiency of bore evacuator. It is the ratio of in-
duced mass flow from the breech to the gjected mass flow through the discharge holes of
bore evacuator.

From theliterature survey, it isfound that alot of works have been done on the experi-
mental measurements of bore evacuator [1~4]. Besides, the bore evacuator flow theory
and the CFD simulation was also studied by some authors [5~8]. However, there is still
the need for more detailed research and more systematic approach to optimize bore eva-
cuator design.
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MATHEMATICAL MODELING

In order to analyze the performance of the bore evacuator, it is necessary to make the
mathematical modeling of gas charging and discharging processes. The formulated ma-
thematical model should be simple so that the analysis can be done within short time with
a personal computer. This would be practical for engineers to perform the analysis and
evaluate the effectiveness of the bore evacuators of different designs, so that the optimum
design is established quickly. The mathematical models derived by the authors based on
thermodynamics and gas equation of state are asfollows.

Mathematical Model of Gas Charging Process

For the process of gas charging into the bore evacuator during firing, the gas pressure

in the evacuator increases and the calculation model is:

Ve o3k

B=p,+2kg [T [piia M

‘/(7 psO 0
where P is the pressure in bore evacuator during charging, Pgg is the pressure in bore
evacuator before charging, V is the volume of bore evacuator, A is the total area of
charge holes, Py and pgy are the initial pressure and density of chamber gas before
charging, Psisthe chamber pressure during charging, t isthe charging time, kistheratio

k+1

of gasspecificheat (Cy/Cy), K0=( 2 )m-l)ﬁ.

k+1

Mathematical Model of Gas Discharging Process

For the process of gas discharging from the bore evacuator to the gun tube after firing,
the gas pressurein the evacuator slowly decreases and the cal colation model is:

2k
Pardeo(l“‘tht)J ()
where Py isthe pressure in bore evacuator during discharging, Pgo and pgo are the initial
discharging pressure and density of gasin bore evacuator, V g isthe volume of bore evacu-

AdKO (k _1) i

ator, Agisthetota areaof dischargeholes, B, = .
2V, Pao

The gas discharging time of bore evacuator is:
k-1

L (Lj o 3
Bd Pd
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Thetotal discharged massflow of bore evacuator is:

1+k
M = S,Ko\[Piopys [ (1+Byt)iedi (4)
where pgp istheinitial gas density in bore evacuator.

CFD SIMULATION

The mathematical models formulated above were based on thermodynamics and gas
equation of state. Another way to formulate the mathematical models of the gas charging
and discharging processes is based on the conservation’s equations such as the conserva
tion of mass, momentum and energy. The difference between those two kind of modelsis
that the direct analytical solution can be obtained for the former, while an numerical me-
thod such as the Finite Difference Method or the Control Volume Method has to be used
for the later. The numerical solution of the conservation’s equations is the well-known
CFD simulation. As CFD simulation provides detailed information such as pressure, ve-
locity and temperature fields during the whole dynamic process, it is more computing in-
tensive than the anaytical solution thus a high performance computer is needed.

Although 2D and 3D steady state CFD simulations of bore evacuator were made by
some researchers [6,7,8], 3D transient CFD simulation has not been reported. As the gas
charging and discharging processes of the bore evacuator are time dependent process, the
transient CFD simulation has to be used to obtain the time dependent information such as
changing of pressure and mass flow rate with time in the bore evacuator and in the gun
tube. Besides, 3D simulation is necessary to accurately determine the mass flux induced
at the breech end due to the j et entrainment near the discharge holes of bore evacuator.

Simulation Conditions

The 3D transient CFD simulations of the high-speed and compressible flow in bore
evacuator were carried out by the authors with the commercial code FLUENTS. The gas
charging and discharging processes were simulated separately. The result from simulated
charging processisused astheinitial condition for discharging process.

In addition, we used the CFD method to perform sensitivity study on some parameters
that could not be included in the mathematical models derived. The following parameters
were investigated to see their effects on the gas charging and discharging processes of
bore evacuator:

— Chargeholeangle

— Charge hole number

— Chargeholeposition

— Dischargeholeangle

— Discharge hole number
— Discharge hole position
— Guntubelength

— Initial discharge pressure
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For each parameter, at |east three simulation cases were run with different value of the
parameter. Thus more than 24 simulation cases were run and the run time on each case
being about 2 ~ 3 daysusing aSGI Origin 2000 workstation.

Simulation Results

The simulated velocity field in the bore evacuator during charging is shown in Figure
1. It can be seen that the velocity distribution during charging depends on the location of
charge holes. The highest velocity is about 650 m/s, which isin the region of the charge
holes.

The simulated velocity field in the bore evacuator and gun tube during discharging is
shown in Figure 2. The result indicates that the gas velocity in the bore evacuator is very
low during discharging process, but the gas velocity at the discharge nozzlesis very high
which formsthe gasjetsin the tube. These gas jetsinduce the flow in the gun tube, which
removes the fume through muzzle end.

The pressure characteristic in the bore evacuator during charging is shown in Figure 3
and Figure 4. From Figure 3, it can be seen that the charge hole angle has greater in-
fluence on the final charged pressure in the evacuator. The smaller the charge hole angle,
the lower the charged pressure. The reason is that the wall of charge hole with smaller
angle has higher resistance to the high velocity charging gas, so the final charged pressure
inthe evacuator becomeslower. From Figure 4, it can be seen that maintaining total charge
hole area, the number of charge holes has little influence on the final charged pressurein
the evacuator.

Figure 5 shows the simulated mass flow rate at both the discharge nozzles and the
breech end during discharging process. It is evident that the small mass flow at discharge
nozzles can induce big mass flow at the breech end. In this case, the induced mass flow
rate at breech end isabout 7~10 times of the mass flow rate at discharge nozzles.

Figure 6 presents a comparison of the simulated mass flow augmentation ratio with
the experimental one [4], which gives good agreement.

During discharging process, the influence of the discharge nozzle angle on the in-
duced massflow at the breech end isshown in Figure 7. It can be seen that the nozzle slant
angle has significant influence on the induced massflow rate. The smaller the nozzle slant
angle, the higher the induced mass flow rate. Thisis because the induced mass flow rate
depends mainly on the nozzle vel ocity component along the tube axis.

The influence of the number of discharge nozzles on the induced mass flow at the
breech end is shown in Figure 8. It can be seen that with the total nozzle area maintaining
constant, the number of discharge nozzles haslittle influence on the induced mass flow at
the breech end.

The influence of gun tube length on the induced mass flow rate at the breech end is
shownin Figure9. It can be seen that the shorter the gun tube, the bigger the induced mass
flow. Thisisdueto the smaller flow resistance with the shorter gun tube.

The influence of discharge nozzle position on theinduced mass flow at the breech end
is shown in Figure 10. From the simulated result of the three locationsit can be seen that
the closer the nozzle to the breech, the bigger the induced mass flow.
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DESIGN CODE DEVELOPMENT

Designing an efficient bore evacuator is very important to agun system. However, the
mathematical model based on thermodynamics and gas equation of state is not good
enough to evaluate the efficiency of bore evacuator because some parameters could not
beincluded in the model. Although the CFD model is good enough to ald the bore evacu-
ator design, the CFD simulation is very time consuming and needs the corresponding
software and hardware. Thus, afast and efficient design code is expected to aid the bore
evacuator design.

Therefore, we combined the CFD simulation results with the mathematical models
and devel oped adesign code called BECAD to calcul ate the efficiency of the bore evacu-
ator and speed up the bore evacuator design. The inputs for the calculation code are the
configuration and position of the bore evacuator, the areas and position of charge and dis-
charge holes, the internal ballistics data. The outputsinclude the peak pressure of the bore
evacuator after charging, the charged mass amount, the discharge time and the discharge
mass amount.

Theflow chart of the BECAD codeisshownin Figure 11.

CONCLUSIONS

The mathematical models based on thermodynamics and gas equation of state were
formulated for the gas charging and discharging processes of bore evacuator. Although
these modelswere simple and easy for analytical solutions, they were not satisfactory due
to the limitation of the models. The 3D transient CFD simulation was applied to study the
detailed gas flow behaviour in the bore evacuator. In addition, the sensitivity of the geo-
metry parameters was obtained from the CFD simulations. By combining the mathemati-
cal modelswith the CFD simulation results, a calculation code was devel oped to evaluate
the efficiency of bore evacuator. This code has been used to improve the design of the
bore evacuator.
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