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OBLIQUE PENETRATION IN CERAMIC TARGETS
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INTRODUCTION

It is very well known that the ballistic mass efficiency of metallic targets against kine-
tic energy penetrators is strongly dependent upon the impact obliquity. Asymmetric for-
ces acting on the projectile during the entry and exit phases are responsible for this effect.
In general, the higher the obliquity, the better the mass efficiency. This is one of the rea-
sons armored vehicles are designed with glacis and slopped walls at the front, and some-
times at the sides, of the vehicles. This effect in metal targets has been demonstrated expe-
rimentally and theoretically in many studies (see, for example [1–3]).

For metallic targets, there is an increase in performance of the target over and above
the increase in the line-of-fire (LOF) thickness. The LOF thickness is given by the simple
geometric relation:

Metallic targets have higher mass efficiencies when the target is placed at obli-
que angles to the penetrator flight path. The objective of this study was to deter-
mine if obliquity increased the mass efficiency of ceramic-faced targets. An ex-
perimental and computational investigation was conducted to study the effect
of obliquity for alumina-faced targets. In a series of experiments, 7.62-mm AP
projectiles were fired at alumina tiles backed by aluminum substrates oriented
at 0, 45 and 60 degrees. The targets had the same areal densities (AD) in the
line of fire (LOF). The residual DOPs were measured in aluminum blocks
mounted behind the targets. The experiments were simulated using the AUTO-
DYN-3D Lagrangian hydrocode. The results showed that ceramic targets per-
form better at normal incidence than at obliquity for the same AD at the LOF.
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where tLOF is the line-of-fire thickness, t is the normal thickness, and θ is the obliquity
angle. The ballistic limit thicknesses, at 0° and 45° obliquity, for various targets against
the 7.62-mm APM2 bullet, shot at muzzle velocity, are shown in Fig. 1. The LOF thick-
ness for the 45° targets was calculated, and it is also displayed in the figure. For the targets
in which there exist data for both 0° and 45° obliquity, it is seen that less LOF target thick-
ness is required to defeat the bullet. That is, obliquity results in further weight savings
tban would be calculated using the simple geometric factor of the inverse cosine. In fact,
to a first approximation, the increase in effectiveness is approximately given by the pro-
duct of the projectile diameter (D) and tan θ. Thus, one might expect even more weight
savings at higher obliquities. 

Figure 1. The ballistic limit thicknesses of metallic targets to the 7.62-mm APM2 projec-
tile for muzzle velocity at 0° and 45° obliquity.

The effect of obliquity on the ballistic performance of composite armor against ball
projectiles was studied in [4], where it was found that mass efficiency increased with obli-
quity. This effect is ambiguous in fabric armor; fabrics exhibit higher ballistic efficiency
only at a limited range of obliquities [5]. It was shown in Ref. [6] that the mass efficiency
of alumina/aluminum targets against 14.5-mm AP projectiles decreases strongly with ob-
liquity.

In this study, we investigate the effects of obliquity for alumina/aluminum targets
against a smaller caliber bullet – the 7.62-mm APM2 – and suggest a physical explanation
for the observed phenomenon by means of experiments and numerical simulations. The
ceramic-faced targets have the same component thicknesses and the same areal densities
(AD) in the line of fire (LOF), as shown in Fig. 2. 
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Figure 2. Schematic of experimental arrangement, line-of-fire thickness held constant.

EXPERIMENTS

In a series of experiments, 7.62-mm APM2 projectiles were fired on Al2O3 tiles
backed by aluminum substrates at muzzIe velocity (840–850 m/s). The targets consisted
of an Al2O3 tile, 3.1 to 9.2-mm thick, backed by an aluminum (6061-T6) substrate, 3.1 to
6.6-mm thick. Experiments were conducted at impact obliquities of 0, 45 and 60 degrees
(NATO). The targets were constructed in sets so that for every oblique target, there also
was a zero-degree target with the same AD in the LOF direction. The experimental proce-
dure is shown in Fig. 3. 

The A12O3 tiles were approximately 50 mm
by 50 mm; the tiles were glued to aluminum sub-
strates that were 200 mm by 200 mm. TheA12O3
tiles were AL98 from Rami Ceramics, Israel;
mechanical properties of the AL98 are given in
Table 1.

The depth-of-penetration (DOP) technique, first introduced in [6–7], was used to eva-
luate the ballistic performance of the targets. The residual DOP values were measured in
an A1 6061-T6 block mounted 50 mm behind the ceramic-faced targets. From the experi-
mental results, the mass efficiencies (Em) of the targets were calculated from Eq. (2). In
Eq. (2), the numerator is the areal density of “semi-infinite” 6061-T6 aluminum penetra-
ted by the APM2 bullet (which is a function of the impact velocity V). The denominator is
the sum of the areal densities of the target components (along the LOF) plus the areal den-
sity penetrated (measured by the DOP) into the aluminum witness block. The baseline pe-
netration into aluminum versus impact velocity curve was experimentally determined in
order to eliminate variations in impact velocity (around the muzzle velocity) [8].
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Figure 3. The experimental procedure.

EXPERIMENTAL RESULTS

The impact conditions and results of the experiments are summarized in Table 2. The
results are also shown graphically in Fig. 4. The targets are arranged in increasing areal
density along the abscissa, and where multiple targets were tested, the spread in Em is also
shown. The results indicate that ceramic/aluminum targets perform better at normal inci-
dent than at obliquity for the same AD at LOF. The trend for Em to decrease with increas-
ing tile thickness ist also observed in the data.
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Table 2. Experimental data and results

Figure 4. Experimental results.

3-D NUMERICAL SIMULATIONS

Four of the tests presented in Table 2 were simulated with the commercial hydrocode
AUTODYN-3D [9]. The total number of nodes used in the Lagrangian mesh was appro-
ximately 50,000. The bullet was modeled as a hard steel core, with lead in the front, all
surrounded by the gilding jacket. Stress-strain measurements of the hard steel core [10]
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permitted an estimate for the constants in the Johnson-Cook constitutive model [11]. The
gilding material model as well as that for the lead came from the library of the numerical
program. The Johnson-Holmquist brittle material model was used to model the ceramic
[12].

Each simulation consisted of two different parts. First, the simulation of the normal or
oblique impact was performed, from which the residual velocity and length of the projec-
tile were obtained. The second step was to simulate the impact of this residual projectile
into a semi-infinite block of aluminum to obtain a computational DOP. The penetration/
perforation of the ceramic/aluminum target and the DOP calculation were done sepa-
rately to optimize the use of computational
nodes and CPU time.

The obiective of the computational
study was to evaluate qualitatively the in-
fluence of obliquity on ceramic failure.
However, to have some confidence in the
computational results, it was necessary to
reproduce reasonably accurately the mea-
sured DOP’s into the aluminum witness
block. The normal impacts were used as a
reference for the oblique impacts. Fig. 5 shows the initial configuration for normal impact
into the ceramic-faced target.

The results for the numerical simulations are shown in Table 3. Agreement is reason-
able, although not perfect, for the normal impact simulations (numbers 16 and 689). The
simulation results for test numbers 13 and 688, which are for 45 and 60 degrees obliquity,
respectively, show the appropriate trend, i.e., a decrease in DOP into the witness block.

Figure 6 is a close-up view of the bullet and material status 12 µs after impact. The gild-
ing and the lead are being eroded. Even though the core is just coming into contact with
the ceramic, the ceramic is already damaged in the front and at the ceramic/aluminum
interface. In fact, the simulations indicate that the gilding metal jacket and lead initiate
damage in the ceramic, diminishing the ceramic resistance to penetration by the core. The
image also shows, as suspected, that the damage propagates perpendicular to the ceramic
surface. Since the ceramic is thinner than for the normal impact case, overall through-
thickness failure occurs earlier for the oblique target. This observation was confirmed in
both the 45 and 60 degrees obliquity impacts.
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Figure 5. Initial configuration showing the mesh and materials.

Figure 6. Material status 12 µs after oblique, 60 degrees, impact.
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CONCLUSIONS

Ceramic targets perform better at normal incident that at obliquity for the same areal
density in the line of fire. It was speculated that this effect was due to the sequence of
damage in the ceramic element, which was confirmed by numerical simulations. The pro-
jectile moves along the LOF, but the timing of the damage in the ceramic tile depends on
the tile thickness in the normal direction. Therefore, thinner tiles fracture earlier (see
Figs. 3 and 6). The substrate is also thinner for the oblique configurations. Ceramic per-
formance is a function of substrate stiffness. Therefore, substrate stiffness is less for the
oblique target than for the normal configuration. However, the primary reason for the
poorer ballistic performance of ceramic-faced targets at oblique angles, compared to an
equal LOF areal density for normal target obliquity, is due to the mechanics of damage
propagation within the ceramic tile.
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