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The longitudinal aerodynamic characteristics of a tail-stabilized 
missile were estimated using the Missile Datcom code and a hybrid 
method. The tail consists of eight swept fins with a wedge section. 
The present analysis accounts for the effect of the wedge airfoil on the 
normal-force curve slope of the fins for all Mach numbers. The results 
are compared with test data at Mach numbers between 0.6 and 3.6 and 
with predictions obtained by Moore and Hymer using the 2005 
version of their Aeropredicion code. 
 
The Aeroprediction and Missile Datcom codes provide very good 
agreement between analysis and test data. The hybrid method, that 
uses the VORLAX code to calculate the contributions of the tail unit, 
gives good results at subsonic and high supersonic Mach numbers. It 
overestimates the normal-force curve slopes of the tail unit and of the 
configuration at moderate supersonic Mach numbers. 

 
 

NOMENCLATURE 
 

be exposed span 
c chord of tail fin 
Cmα pitching-moment curve slope 
CNα normal-force curve slope 
D reference length, maximum body diameter 
DB base diameter 
KBL masking effect due to body boundary layer 
KW amplification of normal-force curve slope due to wedge cross-section 
M Mach number 
Re Reynolds number 
So reference area, (π/4)D2

t thickness of tail fin 
XCP center of pressure location relative to nose tip 
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Notation of the Components 
 
B body alone 
B-T body-tail combination 
TU tail unit 
 
 
INTRODUCTION AND OBJECTIVES 

 
Moore and Hymer [1] developed a semi-empirical method for the estimation of 

the effects of a blunt trailing-edge on the aerodynamics of lifting surfaces. Their method 
uses shock expansion analysis for the basic section and approximations for the effects of 
leading-edge rounding, aspect ratio and number of fins (six or eight). They incorporated 
the method in the 2005 version of their Aeroprediction code. (AP05 - [2]) As part of the 
validation of the method, the authors of [1] and [2] analyzed the aerodynamic 
characteristics of a projectile configuration that features an eight-fin tail, with a wedge 
section. Schematics of the projectile and the section of the fins are presented in the two 
parts of Figure 1. The base diameter ratio was obtained from Moore [3] and is 
DB/D=0.75. The data available in [1] is a good benchmark for additional comparisons. 

 

 
 

Figure 1: Schematic of the benchmark configuration, from Moore and Hymer [1], [2]. 
 

The objectives of the present study are to analyze the benchmark configuration 
using additional methodologies and code, to compare the results with test data and with 
predictions by the AP05 code, and to evaluate the capability of the various methods to 
estimate the longitudinal aerodynamics characteristics of the configuration. 
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ANALYSIS 
 

Wedge Section Effect 
 
The present analysis accounts for the effects of a thick wedge section using a 

method previously proposed by Sigal [4]. In the subsonic and transonic ranges, the 
results of slender body theory that were applied by Sacks [5] for thick narrow wings, 
were used. The governing geometrical parameter in his analysis is thickness to span 
ratio. In the supersonic range, the McLellan [6] analysis that is based on exact oblique 
shock wave relationships is used. The amplification of the normal-force curve slope, 
relative to that of a thin section, depends upon the wedge angle and the Mach number. 

The geometrical parameters for the subject configuration are t/be=0.022 and 
t/c=0.081. The amplification of the normal-force of the fins, relative to that of matching 
thin fins, is: 

 
  ⎧1.053,   M<1.82 

KW = ⎨            (1) 
  ⎩0.94+0.062⋅M, M≥1.82 

 
Missile Datcom 

 
The 1997 version of the Missile Datcom [7] (M-Datcom) code was used to 

analyze the benchmark configuration. The computational model that was used is shown 
in Figure 2. The diameter of the boattail at fins mid-chord location is 0.786 body 
diameters. 

 

 
Figure 2: The computational model used for the Missile Datcom code. 

 
 
The contributions of the tail unit (fins, body-tail mutual interactions, and fin-fin 

mutual interactions) were obtained by: 
 

CNα(TU)= CNα(B-T)- CNα(B)       (2a) 
Cmα(TU)= Cmα(B-T)- Cmα(B)       (2b) 
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The stability derivatives, including wedge cross-section effect are: 
 

CNα(B-T)= CNα(B)+ KW⋅ CNα(TU)      (3a) 
Cmα(B-T)= Cmα(B)+ KW⋅ Cmα(TU)      (3b) 
XCP/D=- Cmα(B-T)/ CNα(B-T)       (3c) 

 
The Hybrid Method 

 
This method, by Sigal [8], combines two prediction tools. The contribution of the 

tail unit is evaluated by the VORLAX code, that is a generalized vortex lattice method 
and code by Miranda et al [9]. The method is based on the linear theory, and is therefore 
not applicable for transonic Mach numbers. It considers all body-fin and fin-fin 
interactions. The contribution of the body alone was obtained from databases and 
methods that were previously reviewed and elected in [10]. The contribution of the main 
body was based on the empirical database of Barth [11]. The contribution of the boattail 
was obtained using Amit’s effective boattail angle method [12] for the subsonic and 
transonic regions and Data Sheets S.01.03.03 and S.08.03.03 by the British ESDU for 
the supersonic range. For details about these Data Sheets see [13]. 

The computational model used for the VORLAX code is depicted in Figure 3. The 
diameter of the model body is 0.786 calibers, as mentioned before. The inclusive span 
matches that of the configuration. The contributions of the tail unit to the normal-force 
and pitching-moment coefficients were obtained by subtracting the stability derivatives 
of the body alone from those of the combination, using eq. (2a) and (2b). 

  
 

Figure 3: The computational model used for the VORLAX code. 
 

The hybrid method also contains an approximate correction due to the masking 
effect of body boundary layer on the tail. The displacement thickness at the tail location 
was evaluated using ESDU Item 89008 [14]. It is assumed that this effect reduces the 
effective area of each fin by the area of a rectangle whose large side is the root chord, 
and whose narrow side is the displacement thickness. The body boundary layer 
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displacement thickness was evaluated for ReD=0.5·106 that was obtained from [3]. For 
the present geometry and Re number 

  ⎧0.968-0.0005⋅M-0.0055⋅M2, M<2.0, 
KBL = ⎨            (4) 
   ⎩0.945-0.018⋅(M-2.0),  M≥2.0. 

 
 

The dependences of KBL and of KW on Mach number are shown in Figure 4. 
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Figure 4: Wedge amplification and body boundary layer correction factors. 
 
The characteristics of the configuration were calculated using 

 
CNα(B-T)= CNα(B)+ KW⋅KBL⋅CNα(TU)   (5a) 
Cmα(B-T)= Cmα(B)+ KW⋅KBL⋅Cmα(TU)   (5b) 
XCP/D=- C mα(B-T)/CNα(B-T)    (5c) 

 
 

RESULTS AND COMPARISONS 
 

Body Alone 
 
Since the two predictions of the body alone characteristics show large differences, 

a third method was used for additional comparison. The comparison includes estimates 
from the following sources: 

 
1. Output of the M-Datcom code. This is based on several methods as 

described in [7]. 
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2. The present combination of database and methods that was used with the 
hybrid method. 

3. ESDU item 90034 [15]. This code provides two estimates for the stability 
derivatives: Basic, or inviscid, and a second estimate that considers two 
effects caused by viscosity: inclination of the friction force at angle of attack 
and  effective flare caused by the growing boundary layer displacement 
thickness along the body. This code was run for ReD=0.5⋅106 as noted 
before. 

 
Comparisons of the normal-force curve slope and the center of pressure location 

of the body are presented in the two parts of Figure 5. It is apparent that the ESDU basic 
estimate and the present method are in good agreement for both parameters. The M-
Datcom code features a dip in the normal-force curve slope around M=0.9. This is 
accompanied by a forward shift of the center of pressure. The ESDU estimates, with the 
viscous effects included, provide a larger normal-force curve slope and a more aft center 
of pressure location than all other methods. The good match between the basic ESDU 
output and the present prediction validates the latter. 

 
Body-Tail Configuration 

 
The two parts of Figure 6 present comparisons between predictions and test data 

for the configuration. Both codes, namely the AP05 and the M-Datcom with wedge 
effect included provide good estimates of the normal-force curve slope and the center of 
pressure location. The deviations between predictions and test data are less than 7.0% in 
CNα and 0.7 in XCP/D, namely 5.8% of body length. The M-Datcom shows a spike in 
CNα and a dip in XCP/D at M=1.0. The AP05 code prediction of the center of pressure 
location in the transonic region is more forward than test data. 

The hybrid method provides a good estimate at the subsonic range. It 
overestimates CNα in the moderate supersonic range and provides very good predictions 
of both stability derivatives at M ≥ 3.0. 
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Body alone
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Figure 5a: Comparison of body alone 

 normal-force curve slope. 
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Figure 6a: Comparison of body-tail 

nornal-force curve slope. 
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Figure 5b: Comparison of body alone 
Center of pressure location. 

 
Body-Tail

-12.0

-11.0

-10.0

-9.0

-8.0

-7.0

-6.0

-5.0

-4.0
0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6

M

Xc
p/

d

Test data

AP'05

M-Datcom + wedge effect

Hybrid + wedge effect

 
Figure 6b: Comparison of body-tail 

center of pressure location  
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