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A new numerical-analytical model of penetration of long 
axisymmetric elastically deformable non-homogeneous projectiles in 
semi-infinite targets is presented. A background of this model is the 
integral-differential equation of ballistics for non-deformable 
projectile. This equation is obtained on the basis of Lagrange-Cauchy 
integral for non-stationary irrotational motion of incompressible fluid, 
and equations of expansion of spherical cavity. The field of velocities 
in target is defined by real projectile shape and a shape of entering 
hole. The elastic deformations of projectile associated with its forced 
longitudinal oscillations are taken into account. Oscillation patterns 
for homogeneous and non-homogeneous projectile are calculated and 
compared. The results are compared with known experimental and 
calculated data. 

 
INTRODUCTION 

 
The investigation of interaction of rigid penetrator and targets of different nature 

is going on for a quite a long time. However, simple analytical models adequately 
describing experimental results still continue to improve [1,2]. These improvements are 
achieved by taking into account of some factors and discarding other. Among such 
factors are friction, wear, elastic deformation, blunting, yaw, oscillations, to name few. 

A recent study of penetration of homogeneous rigid and elastically deformable 
projectiles into semi-infinite targets from different materials (plastic and brittle) [3] has 
shown that forced longitudinal elastic oscillations in rod-like projectiles have low 
amplitude and high frequency and, thus, do not have a noticeable effect on final 
penetration depth.  

In the framework of this study we use the developed model for the analysis of the 
influence of geometrical non-homogeneity and the size of projectile on penetration. The 
available experimental data by Forrestal et al. [4] and Warren [5] on penetration in grout 
and limestone were used to compare the observed results with calculations. 
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MODEL OF PENETRATION OF NON-DEFORMABLE PROJECTILE INTO 
SEMI-INFINITE TARGET 
 

Consider the normal penetration of an axisymmetric rigid projectile into a semi-
infinite target (see Fig.1). 

In Fig. 1 we define the following notations and assumptions: σ1 — lateral surface 
of projectile (i. e. projectile surface without its rear surface), σ2 = {x = 0, r ≥ d/2} — 
target free surface, σ3 = {0 ≤ x ≤ (P – L), r = d/2} — free surface of entry hole. The 
direction of projectile motion coincides with axis х which is its axis of symmetry.  

Main model parameters are: u(t) — projectile velocity; L — projectile length; 

 — penetration depth; d — projectile diameter; U( ) ( )
0
t

P t u d= τ∫ τ s — striking 

(impact) velocity, m — projectile mass. 
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whole volume of fluid. Function f(t) is obtained from the boundary conditions. We 
assume that in (2) static component of pressure on projectile surface p = Rt where for Rt 
we use the analytical solution of a problem of quasi-static expansion of spherical cavity 
in target material which takes into account elastic and plastic (or brittle) response of 
material. 

For the potential Ф we have the following Neumann boundary conditions: 
 

 ∂Ф/∂n = – u(t)nx at M(r,x)∈σ1, ∂Ф/∂n = 0 at M(r,x)∈(σ2 ∪ σ3), (3) 

Ф= O(1/R)→0 when 2 2R r x= + →∞ , 
 
where σ1, σ2, σ3 — surfaces as indicated earlier, nx — cosine of angle α between axis х 
and the normal to projectile surface σ1, (see Fig. 1). Condition (3) is a condition of 
impenetrability of target material across the projectile surface σ1, cylindrical surface σ3, 
and target surface σ2. 

From the linearity of boundary value problem of Neumann (1) and (3) it follows 
that the velocity potential Ф(х,r,t,P) may be presented as 

 
 Ф(х,r,t,P) = u(t)ϕ(x,r,P). (4) 
 
Here, the function ϕ(x,r,P) is a solution of Laplace equation 
 
 ∇2ϕ = 0 (5) 
 
with boundary conditions 
 

∂ϕ/∂n = –nx when M(х,r)∈σ1, ∂ϕ/∂n=0 at M(х,r)∈(σ2 ∪ σ3), 
 ϕ = O(1/R)→0 when R →∞. (6) 
 
Notice, that ϕ(x,r,P) depends on P as on parameter, which, in its turn, depends on time t. 

Thus, the velocity field in the proposed model is defined by the expression 
 
 v

r  = –u(t) grad ϕ(x, r, P).  (7) 
 
As in [7], we use the Lagrange-Cauchy equation (2) to develop the equation of 

motion for the penetrator. Substituting velocity potential (4) (Φ = u(t)ϕ(M,P), 
2

P
du u

t dt
∂Φ ′= ϕ +ϕ
∂

, gradΦ = ugradϕ) in the Lagrange-Cauchy integral (2) and 

considering this integral on the projectile surface, the left-hand part of (2) would define 
contact pressure pc(M,P) of target material on the projectile 
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 ( ) ( ) ( ) ( )( ) 22, , grad , 2 ,
2c P

du u
tp M P M P M P M P R

dt
ρ′= ρϕ + ϕ + ϕ + . (8) 

 
A full decelerating force N acting on the projectile is obtained by integration over 

the contact surface of the projectile and target σ(P) of the projection (–pc(M,P)·nx(M,P)) 
of the contact pressure (8) onto the axis x. Here nx(M,P) is the cosine of an angle which is 
formed by a unit normal to the projectile surface at point M with the x axis (see Fig. 1). 

Equating a projectile’s resistance force N to its inertia force mu , we have ballistic 
equation of motion for a non-deformable projectile: 

&

 
 = N,   u(0) = Umu& 0, (9) 

 
where U0 = Us is the striking velocity. 

Accounting for (8), equation (9) can be written as  
 

 , u(0) = U( ) ( ) ( )20.5 tmu A P u B P u C P R= −ρ − ρ −& & 0. (10) 
 
In (10) the coefficients A, B, C depend on projectile shape, penetration depth P and are 
defined by the formulas  
 

( ) ( ) ( )
( )

, ,x M
P

A P M P n M P d
σ

= ϕ σ∫ , ( ) ( )
( )

,x M
P

C P n M P d
σ

= σ∫ , 

 ( ) ( ) ( )( ) ( )
( )

2grad , 2 , ,P x
P

B P M P M P n M P d
σ

′ M= ϕ + ϕ∫ σ . (11) 

 
A number of expressions exists for the value of static penetration resistance of 

target material Rt depending on material rheology. For elastic-ideally plastic and elastic-
brittle materials see, for example, [1,2,8-10], and for post-yield strain-hardening 
material — [11]. 

For penetration into limestone, Frew et al. [12] established that penetration 
resistance depends on penetrator dimensions: 

 
 Rt = Ψ + φ (a0/a),  (12) 

 
where Ψ = 607 MPa, φ = 86 MPa, 2 a0 = 25.4 mm and a is the projectile radius (mm). 

To find velocity potential ϕ from (5), (6), the indirect method of boundary 
equations [13] was used, where ϕ is represented by a simple layer potential with source 
density distributed on the projectile and entry hole surfaces. 
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AN ANALYSIS OF ELASTIC OSCILLATIONS IN NON-HOMOGENEOUS 
PROJECTILE 
 

While evaluating the influence of elastic longitudinal oscillations in a projectile 
during its penetration, we assume that the projectile has the shape of circular cylinder 
with a diameter d and length L=L1 + L2 (Fig. 2).  

 N = σ0F2
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Solution of problem (13)-(15) is 

 ( ), r oscw x t w w= + =
2

0 0
0 2

1
(1 cos ) ( ), 0

2
i

i i
i i

t p t V x x L
p

∞

=

σ δ δ
− −σ − ≤∑ ≤ , (16) 

where 
( )

( ) ( ) ( ) ( )
( ) ( ) ( )

0 1

0 0 0
1 0 1

1 0 0 1 0

cos , 0 ,
( ) cos tan sin

cos , ,
cos tan sin

i

i i i i
i

i i i

p x c x L
V x p x c p L c p x c

p L c L x L
p L c p L c p L c

⎧ ≤ ≤
⎪= +⎨ ≤ ≤⎪ +⎩

 

0 p pc E= ρ — sound velocity; pi, i = 0,1,2,… — solutions of frequency equation 

( ) ( ) ( ) ( )2cos γ β sin γ 1 β α sin γ β cos γ 1 β 0i i i i− + − =⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ,  0 1γ , βi ip L c L L= = , (17) 

( ) ( ) ( ) ( ) ( )2
0

δ , , , ρ
L

i i i i i i iV L V V V V x V x dx= = ∫ , and wr = –σ0δ0t2/2. 

Initial velocity of penetration of deformable projectile U0 in target accounting for 
an elastic response of the penetrator is  

 
 0 0 0s pU U c E= −σ , (18) 
 
where Us — projectile velocity before its meeting with target, i.e. impact velocity. For a 
non-deformable projectile U0 = Us. Thus, actual penetration velocity u(t) and 
penetration depth P(t) are determined by formulas 
 

 ( ) ( ) ( ),oscu t u t w L t= + & , ( ) ( )
0
t

P t u d= τ τ∫ , (19) 
 

where u — velocity of rigid projectile found from (10).  
 
NUMERICAL IMPLEMENTATION 
 

Calculations were carried out for steel projectile impacting grout targets [4]. For 
grout target Rt = Sfc,  [15]. Projectile – length 88.9 mm, outer diameter 
12.92 mm, inner diameter 6.35 mm, CRH 4.25 [4]. Homogeneous and non-
homogeneous projectiles have same mass and head shape. 

0.572.0 cS f −=

Integro-differential equation (10) was solved numerically. Fig. 3 shows the 
velocity of penetration. Figure 4 compares ( ),oscw L t&  component of (19) for 
homogeneous and non-homogeneous projectiles for a fragment of Fig.3. Figure 5 gives 
a comparison of final penetration depth with experimental data. 
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         Figure 3. Penetration velocity (19) taking into 
                account oscillations of the projectile. 
 

      
   (a)      (b) 

Figure 5. Comparison of experimental and calculated dependence of penetration depth for grout targets 
with unconfined compressive strength 13.5 MPa (a) and 21.6 MPa (b). 

 
 
CONCLUSION 

 
Comparison of the modeling results with experimental data for grout and 

limestone targets [4,12] show good agreement without additional fitting parameters. 
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The calculations show that oscillations of the tip of non-homogeneous projectile 
are more complex then for homogeneous one. Amplitudes of velocities and 
displacements are varying around values for homogeneous projectile:  

0 0
0 ,

2
max max
osc osc

p p
w c w L

E E
σ σ

≈ ≈& . 

For targets with lower strength these amplitudes are smaller because σ0 ∼ Rt << 
projectile yield limit. Besides, these amplitudes decrease with increase in projectile 
diameter (inverse quadratic dependence). 
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