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Analytical solutions for the linear and nonlinear yaw growth of a 
projectile impacting and traversing dense media are presented. From 
the linear solution, it is shown that Roecker’s linear exponential yaw 
growth model can be obtained from the general solution for arbitrary 
impact yaw and yawing rates after a sufficient depth of penetration.  
However, using the general solution, it is shown that Roecker’s yaw 
growth model does not adequately represent the yaw growth during 
the initial phase of the penetration event.  Analytical solutions for the 
nonlinear yaw growth are then presented.  For the particular form of 
the overturning moment considered here, the nonlinear yaw growth is 
characterized by oscillating motion at yaw angles less than 180 
degrees or by an end-over-end tumbling motion, depending on the 
striking yaw and yawing rate.  A limiting case motion between the 
two regimes is also possible but physically unlikely.  However, the 
limiting case motion represents an approximation of the nonlinear 
exponential yaw growth over a significant portion of the penetration 
event for the general case, provided the striking yaw and yawing rate 
are small.  This validates its use as a representation for the nonlinear 
yaw growth in prior work. 

 
INTRODUCTION 

 
     The yawing motion of projectiles in dense media is significantly different than free- 
flight yawing motion in air.  In particular, for spin (gyroscopically) stabilized 
projectiles, the increase in media density between air and a more dense medium, such as 
water, soil, or tissue simulants, is sufficient to reduce the gyroscopic stability so that the 
projectile is stable in air but unstable in dense media.  This instability produces a rapid 
increase in yaw to very large angles as the projectile traverses the dense media. 
     The yawing behavior of projectiles in dense media has been investigated previously 
from both theoretical and experimental points of view[1,2].  One important result, 
obtained by Roecker [1], forms the current theoretical basis for characterizing important 
aspects of projectile yawing behavior in dense media.  Using a simple linear equation of 
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motion, Roecker [1] has obtained an analytical solution for the yawing motion of an 
unstable bullet in dense media.  Roecker also obtained a numerical solution of the large 
angle nonlinear form of the governing equation.  Roecker used his theoretical results as 

a basis for correlating experimental data, 
and the results (shown in Fig. 1) seem to 
show excellent agreement with the 
derived form.  More recently, Flis [2] 
obtained an analytical solution to the 
nonlinear form of the governing equation 
that was solved numerically by Roecker.  
This solution provides a relatively simple 
analytical form for Roecker’s numerical 
results and extends Roecker’s analytical 

t

F
u

 
g
c
o
s
p
o
t
T
h
i
c
a
A
c
i
f

T
 
 
a
a

ig. 1.  Correlation of experimental yaw data 
sing Roecker’s theoretical results, from Ref [1].
 solution of the linear governing equation 
o larger penetration depths and high yaw angles. 
    Unfortunately, the mathematical basis for Roecker’s analytical solution to the linear 
overning equation (and subsequent numerical solution) is suspect because the initial 
onditions were not properly applied when the solution was developed.  (Similar 
bservations have been made independently by Flis [2].)  The result is that Roecker’s 
olution does not properly characterize the yawing motion of projectile in dense media, 
articularly during the early phase of the penetration event.  It is possible, however, to 
btain general analytical solutions to both the linear and nonlinear governing equations 
hat are mathematically sound and are valid for a more general set of initial conditions.  
he yaw growth behavior from the solutions of the linear governing equations is shown 
ere to asymptotically approach Roecker’s linear exponential yaw growth model for 
ncreasing penetration depth.  The solutions also reconcile the initial conditions 
orresponding to Roecker’s linear exponential yaw growth model with the local yaw 
ngles and angular rates exhibited by an unstable projectile during the penetration event.  
nalytical solutions to the nonlinear governing equation are also obtained which 

omplement the numerical solutions obtained by Flis [2].  The results expose important 
nsights into the physical behavior of yawing projectiles in dense media and set the 
oundation for correctly using the functional forms proposed by Roecker and Flis. 

 
HE NONLINEAR AND LINEAR GOVERNING EQUATIONS 

    The derivation of the governing equation used as a basis for developing the 
nalytical solution is shown below.  From Newton’s Second Law, the rate of change of 
ngular momentum of the projectile with respect to time is equal to the applied moment. 
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Here,  is the yaw angle,  is the transverse moment of inertia of the projectile,  is 
the media density,  is the projectile velocity,  is the reference diameter, s 
the reference area, and  is the pitching moment coefficient.  The nonlinear form of 
the applied fluid dynamic moment is based on slender body theory as shown previously 
by Roecker. 
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     The independent variable can be transformed from space to time, and the relative 
effect of the deceleration is assumed small.  The remaining coefficients shown in Eq. 2 
can be represented by a single constant, assuming invariance with velocity and yaw 
angle. 
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M can be positive or negative depending on whether the projectile is statically stable or 
unstable.  The focus of the current effort is on characterizing the yawing performance of 
projectiles that are statically unstable.  For the remainder of the report, it is assumed that 
M is positive.  A linearized form of the governing equation, valid for small angles, can 
be obtained from the nonlinear equation approximating α≅αα cossin .  Both the linear 
and nonlinear second-order differential equations are subject to the following general 
initial conditions at  0s .

  00)s( α=α       00)s(
ds
d

α′=
α  (3) 

 
SOLUTION OF THE LINEAR GOVERNING EQUATION 
 
     The solution to the governing linear ordinary differential equation after the 
application of the initial conditions is shown in Eq. 4.  
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However, Roecker obtained his solution by arguing that the contribution of the damped 
exponential term of the general solution decreases rapidly with distance and can be 
ignored.  By ignoring this term and then applying the initial condition , he 
obtains the following solution. 

00)s( α=α

  ))ss(Mexp()s( 00 −α=α  (5) 
     The approach of neglecting portions of the general solution and then applying initial 
conditions is not mathematically well founded.  Even if the initial angular rate effect can 
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be ignored, as the penetration depth increases, Eq. 4 yields only half of the initial yaw 
angle at the point where the initial conditions are applied and not the initial yaw angle as 
proposed by Roecker in Eq. 5. 
     A more rigorous derivation of Roecker’s form can be obtained by examining the 
solution obtained in Eq. 4.  Such a solution should provide more physical insight into 
why Roecker’s correlation is valid.  At a large enough penetration depth , the yawing 
rate (determined from the derivative of Eq. 4) can be related to the yaw angle in a very 
simple manner because the damped exponential term in both equations becomes small. 

ps

  M)s()s( pp α=α′  (6) 
Since the initial conditions can be applied at any point along the penetration event, Eq. 4 
can be reduced to a very simple form that resembles Roecker’s solution. 
  ))ss(Mexp()s()s( pp −α=α  (7) 
     The importance of this result is that it shows that when the depth of penetration is 
large enough, the subsequent yaw growth beyond a given penetration depth  depends 
only on the instantaneous yaw angle 

ps

pα .  Eq. 7 appears to be consistent with the form 
proposed by Roecker.  Significantly, pα  in Eq. 7 is not the striking yaw at the 
beginning of penetration event.  However, Eq. 4 shows there is a transitional region 
where the yaw versus penetration depth should not be expected to vary as the simple 
exponential form proposed by Roecker (Eq. 7) and the yaw growth depends on the 
striking yaw and yawing rate.  It is only after a sufficient depth of penetration that the 
instantaneous yaw angle and yawing rate are proportional (Eq. 6) and the yaw growth 
appears to be proportional only to the instantaneous yaw angle.  In this regime, the yaw 
growth should correlate with the exponential form proposed by Roecker. 
 
SOLUTION OF THE NONLINEAR GOVERNING EQUATION 
 
     The small angle assumption required to derive the linear governing equation and 
analytical solution can be removed by directly solving the nonlinear governing equation.  
This allows solutions to be obtained for higher yaw angles than for the linear solution.  
The solution is complicated by the fact that the governing equation is now nonlinear, 
but the form of the governing equations is similar to other equations (nonlinear 
pendulum equation, for instance) and solution methods exist for this type of nonlinear 
equation.  Depending on the initial conditions, the solution can take different forms.  
Flis previously obtained analytical solutions for one particular set of initial conditions 
and numerical results for a variety of other initial conditions.  The current analysis 
presents the analytical solutions for the complete range of initial conditions. 
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     The analysis performed by Flis shows that the first integration of the second-order 
nonlinear governing differential equation produces Eq. 8. 
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Depending on the value of , the solution of Eq. 8 takes different forms.  Three cases 
have been identified.  Note that 

κ
κ can never be greater than one because  will 

never be greater than one and the second term will always be negative for positive 
values of the yaw growth parameter M. 

0sinα

 
Case 1 (Oscillating Solutions): )10( <κ< .  The solution for the first case has the 
following form where  is one of the Jacobi elliptic functions.  This function is 
also written as 

)m|u(dn
)m,u(dn  in traditional texts. 

  ( )[ ]κ−+−=α − 1|)ŝss(Mdnsin 0
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This solution will provide the solution for yaw angles up to 2/π  (assuming the striking 
yaw is below ) or alternatively over the interval 2/π K2K4nŝss0 0 ≤−+−≤  where K 
is the period of the elliptic function and n is an integer so that K4K4nŝss0 0 ≤−+−≤ .  
To obtain the solution as the yaw angles continue to increase above 2/π , a different 
branch of the solution must be used. 
  ( )[ ]κ−+−−π=α − 1|)ŝss(Mdnsin 0

1  (10) 
This solution is valid over the interval K4K4nŝssK2 0 ≤−+−≤ .   is determined 
from the initial conditions (assuming the striking yaw is less than ) so that 

ŝ
2/π
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where  and  are additional Jacobi elliptic functions.  These solution 
are valid for positive values of striking yaw 

)m|u(cn )m|u(sn

0α .  Solutions for negative values of 0α  
can be obtained in a similar manner. 
    Figure 2 shows the typical yawing motion for this case for a representative value of 

.  From a small initial striking yaw, the yaw grows rapidly to 90 degrees.  Beyond 90 
degrees, yaw growth continues but eventually slows before reaching 180 degrees and 
reverses direction.  This oscillating motion continues with the yaw bounded between a 
particular minimum and maximum yaw that depends on the initial striking yaw and 
yawing rate.  This minimum yaw will be greater than 0 and the maximum yaw will be 
less than 180 degrees for positive striking yaws.  The solution shown in Fig. 2 assumes 

κ
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zero initial angular rate.  However, the 
yawing behavior for nonzero initial 
angular rates (for constant values of ) is 
also represented by these same curves by 
appropriate shifting of the solution along 
the independent variable axis to obtain the 
proper impact location, based on the 
correct striking yaw and angular rate. 

κ

 
Case 2 (Neutrally Stable Solutions): 

)0( =κ .  Solutions for this case have been 
previously obtained by Flis.  Two valid 
solutions can be obtained for this case, 
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ig. 2.  Typical yawing motion for 
ase 1, 2 and 3 nonlinear solutions. 
depending on the initial conditions.  For 

he initial conditions 00 sinM α±=α′  

 ( ) ( ) ( ))ss(Mexp2/tan2/tan 00 −±α=α  (11) 
igure 2 also shows the typical yawing motion for this case for the same initial striking 
aw for positive and negative initial yawing rates.  As can be seen for this case, the yaw 
ncreases to 180 degrees (bullet flying base first) or decreases to zero.  Note that the 
symptotic solutions for both sets of initial conditions for Case 2 are neutrally stable 
olutions.  That is, any perturbation to solution will result in the solution diverging from 
he asymptotic value resulting in a yawing motion resembling Case 1 or Case 3.  This 
an be confirmed by an examination of the governing equation (Eq. 2).  Any 
erturbation in the yaw angle about 0=α  or π=α  will result in a fluid dynamic 
oment that will tend to increase the yaw angle rather than restore the yaw angle to the 

symptotic value.  Because these solutions are neutrally stable, it is unlikely that either 
ase 2 solution will be observed in practice. 

ase 3 (Tumbling Solutions): )0( <κ .  The solution for the third case is cast in terms 
f another Jacobi elliptic function .  For positive striking angular rate, the yaw 
ngle will continuously increase and the solution can be written as follows: 
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ver the interval K4K4nŝssK2 0 ≤−+−≤  where K is the period of the elliptic 
unction and n is an integer so that K4K4nŝss0 0 ≤−+−≤  and 
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over the interval K2K4nŝss0 0 ≤−+−≤ .  Solutions for negative striking angular rate 
are easily obtained and have a similar form. ŝ  is determined from the initial conditions 
(assuming the striking yaw is 2/2/ 0 π≤α≤π− ) so that the following two conditions 

are satisfied so that K4ŝ0 ≤≤ .  ⎟
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For initial striking yaw angles between 2/2/ 0 π≤α≤π−  and positive striking angular 
rate, the solution in Eq. 12 describes the initial yaw motion between the striking yaw 
and  with .  The solution in Eq. 13 describes the subsequent yawing motion 
for yaw angles between  and 

2/π 0n =
2/π 2/3π  with 1n = .  As the yaw continues to increase, 

the description of the yaw alternates between Eq. 12 and 13 with the integer n being 
incremented by one over the previous cycle of motion. 
     Figure 2 also shows the typical yawing motion for Case 3 for a representative value 
of .  Like the other solutions, the yaw grows rapidly to 90 degrees.  However, unlike 
the Case 1 and 2 solutions, the yaw continues to grow beyond 180 degrees.  Beyond 180 
degrees, the motion essentially repeats itself as the bullet continues to tumble.  The 
solution shown here assumes a positive initial rate that drives the motion to increasing 
positive yaw angles.  Solutions for negative initial angular rates are obviously possible 
and drive the yaw to increasing negative yaw angles. 

κ

     The solutions show, for a fixed striking yaw 0α , the type of motion that results 
depends on the striking yawing rate.  If the striking yawing rate is low enough (Case 1), 
the motion will be oscillatory.  However, if the striking yawing rate becomes large 
(Case 3), the projectile will tumble because the initial yawing rate is enough to 
overcome the applied fluid dynamic moment throughout the penetration event.  Case 2 
represents a limiting case between the two regimes. 
     As mentioned previously, Roecker used a numerically derived nonlinear solution to 
successfully fit his experimental data.  Flis later obtained essentially the same solution 
analytically (presented as Case 2 here).  The nonlinear exponential yaw growth model, 
based on Roecker’s numerical solution and Flis’s analytical solution is shown in Eq. 14. 
  ( ) ( ) ( )sMexp2/tan2/tan refα=α  (14) 

refα  is an arbitrarily selected constant reference angle.  The nonlinear exponential yaw 
growth model reduces to the linear exponential yaw growth model for small angles.   
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     By shifting the solutions along the 
independent axis (Fig. 3) so that the 
solutions coalesce at 2/π=α , it becomes 
apparent that the nonlinear yaw growth 
model represents the yaw growth over a 
significant portion of the penetration event.  
The angular rates at 2/π=α  for each 
solution are similar but not equal for small 
values of κ  by virtue of Eq. 8.  Like the 
linear solution, the nonlinear yaw growth 
model (Eq. 14) only represents the yaw 
growth after a sufficient depth of 
penetration and there is a transitional 
region where the yaw growth is more 
properly represented by the complete 

solutions (Eqs. 9 and 10 or 12 and 13) unless, of course, the boundary conditions 
produce the Case 2 solution. 
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CONCLUSION 
 
     A complete set of analytical solutions for the linear and nonlinear yaw growth of a 
projectile impacting and traversing dense media is presented.  The solutions are used to 
expose important attributes of the yawing behavior of projectiles in dense media.  The 
results show that for a sufficient depth of penetration, the yaw growth can be 
characterized by Roecker’s linear and nonlinear yaw growth models, but there is a 
transitional region early in the penetration event, where the more complete solution is 
required to characterize the yaw growth.  The solutions also show that the nonlinear 
yawing motion is characterized by oscillating motion at yaw angles of less than 180 
degrees or by an end-over-end tumbling motion, depending on the striking yaw and 
yawing rate.   
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