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A two stage model for the acceleration of fragments by explosive 
warheads is proposed to approximate the velocity reached by spherical 
metal fragments placed inside or outside a symmetrically detonated 
spherical charge. Experiments conducted by M. Held for placement of 
a fragment near the base of a cylindrical charge suggest that the 
maximum velocity is obtained for partially embedded fragments. We 
replicated this result by Autodyn simulations, and obtained a similar 
result with the two-stage model. The first stage is acceleration due to 
wave diffraction at the spherical fragment surface. The second stage is 
continuous acceleration by drag force due to entrainment of the 
fragment by the expanding detonation products. We approximate the 
products flow field as having linear velocity distribution, and a more 
elaborate mass-conserving density distribution.   

 
 
 

INTRODUCTION 
 
Controlled fragment acceleration is of major interest in warhead ballistics. A 

simple estimate of the fragment final velocity is readily obtained by one of the Gurney 
formulae [1]. This approximation is valid only for fragments resulting from a confining 
liner where the fragmentation takes place at the end of the acceleration process. The 
Gurney model is based on a simplified expansion flow field, assuming linear velocity 
and uniform density distributions. Invoking energy and momentum balance leads to an 
estimate of the asymptotic liner velocity that in the spherical case reads 
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Where VE is a characteristic velocity related to the specific energy of the explosive, and 
M, C are the mass of the liner casing and the charge respectively. Obviously, a Gurney 
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model cannot predict the terminal velocity of a single non-confining fragment.  There 
are other approaches to estimating the velocity of a confining liner as a time-space 
evolution process [2-3], but they are of less practical use. 

It is well known that the acceleration of a single fragment strongly depends on its 
initial location relative to the charge surface, an effect that cannot be accounted for by 
the Gurney model. The first experimental data that shows this dependency is due to 
Manfred Held [4] and is presented in Figure 1. 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. Experimental data for the final velocity of a 3mm diameter steel sphere from the base of a 

cylindrical charge vs. its initial position, published by M. Held [4]. 
 

This data clearly shows that the terminal velocity of a 3mm steel sphere reaches a 
peak value when it is partly embedded in the explosive. When the sphere is placed 
deeper in the explosive, or at a standoff location outside, its final velocity decreases.  

There are few publications in the open literature concerning the acceleration of a 
single fragment. Some of them are experimental (mainly by M. Held), and some are 
theoretical, see for example references [5-6]. Nebenzahl [5] estimated the velocity 
vector of a surface-embedded sphere fragment due to a sliding detonation by a simple 
model for the diffraction of the detonation front at a partially-embedded sphere. Duvall 
and his colleagues [6] calculated the velocity of a small projectile accelerated by a plane 
layer of explosive assuming acceleration by a constant-coefficient drag force. Their 
results indicate that a maximum projectile velocity is obtained for an outer placement, 
in disagreement with Held's experimental results.  

In our study we model the fragment acceleration by a detonated charge, seeking 
an agreement with the placement-velocity trend observed by Held. The configuration 
we consider is a symmetrically detonated spherical charge with a small spherical 
fragment placed inside or outside the charge. To assist in understanding the acceleration 
mechanism we used the Autodyn numerical code [7]. We first outline the main results 
of these simulations, and then proceed to describe our model for the acceleration 
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process. As a preparatory stage, we computed the terminal velocity of the sphere in 
Held's experiment, for s=-5mm, 0 and 9mm.  The results were close to those measured 
by Held, hence this test constitutes a rough validation of the Autodyn scheme for the 
present study. 
 
 
GENERAL CONSIDERATIONS 

 
Let a small metallic sphere be embedded in a spherical explosive charge initiated 

at its center. Using the Autodyn CEL (Coupled Euler Lagrange) option, the sphere 
trajectory is obtained solely from the constitutive laws of the solids and gas involved. 
Inspecting these simulations, we tracked pressure, density and velocity profiles in the 
products following the detonation of the spherical charge as shown in Fig. 2 (without 
the interference of the fragment). 

 

     

 

 
 

Figure 2. Density, velocity and pressure profiles in the detonation products for a sphere 
detonated in ambient pressure air, at 3, 9 and 14µs. 
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This data demonstrates that the underlining assumptions of the Gurney 
formulation do not hold in this case, so that the Gurney estimate of the terminal velocity 
of the metallic sphere is invalid here. 

Referring to Fig. 2 for a TNT charge of mmRC 30= , the spatial distributions are 
shown at times sT µ31 =  (before completion of the detonation), sT µ92 =  and  

sT µ143 =  (after completion of the detonation). At  the fluid velocity and density 

behind the detonation front are  

1T

4/DuCJ ≈  and 03
4 ρρ ≈CJ , where D is the detonation 

velocity and 0ρ  is the initial density of the explosive (assuming 3=γ ). As the charge is 
completely detonated, the pressure and the density drop while the velocity of the 
expanding detonation products increases sharply. In free-expansion mode (into 
surrounding air) the velocity peak decreases slowly in time while the density and 
pressure drop much faster. It is interesting to note that the velocity of the expanding gas 
is roughly linear with the radial coordinate, while the density displays an inverse trend.  

We first consider the maximum-terminal-velocity case where the fragment is 
partially embedded, and then we proceed to examine the inner or outer placement cases. 
  
 

SPHERE EMBEDDED WITHIN THE CHARGE 
 

The simulations indicate the following “physical scenario” of the acceleration 
process: 

(1)   Upon the arrival of the detonation front it is reflected from, and diffracted 
around, the sphere, as can be seen  in  Fig.  3.  The  acceleration  is  positive  until  the 

  

 
 

Figure 3. Isobars for the detonation wave diffracted by the sphere. 
 

wave has somewhat traversed the spherical mid-plane. From then on the sphere is 
decelerated up until the end of the diffraction phase. This pattern is readily interpreted 
as follows. At the reflection-diffraction stage the upstream-facing part of the spherical 
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surface is exposed to the high pressure accompanying the reflection of the detonation 
wave, in a similar way to the reflection of a planar shock wave. Unlike the case of a 
shock reflection, however, here the high pressure gradient behind the detonation front 
contributes a significant negative impulse once the front has passed the mid-plane, 
and the total force vanishes when about 2/3 of the sphere has been engulfed by the 
front. This explains why the peak velocity is obtained for a partly embedded sphere. 
(2)  The end of the wave-interaction phase is marked by the point of sign-reversal 
on the sphere velocity history, where the velocity has reached a local minimum value, 
as shown in Fig. 4.  From that time on, the sphere is smoothly accelerated as it is 
entrained by the detonation products. Unlike steady entrainment by an oncoming 
flow, the acceleration in this case is not only by dynamic pressure (multiplied by a 
suitable drag coefficient), involving also an initial diffraction-phase velocity 
increment.  

 
 

 
 

Figure 4. Velocity time-history of a sphere embedded in the explosive; left: S=10mm, and in air; 
right: S=-10, (see position in Fig.1). 

 
We thus propose a two-stage acceleration model. The first stage is the lumped 

acceleration due to the entire process of wave diffraction around the sphere; in the 
second stage the sphere is smoothly accelerated by a drag force. We first present the 
diffraction phase, and follow by an outline of the drag phase. 

 
 

MODEL DESCRIPTION 
 

The diffraction model is formulated separately for the two different cases of 
internal and external placement. Turning to the internal case, the in-charge diffraction 
loading is modeled by the space-time surface pressure distribution [5], 
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where θ=0 at the upstream-facing point. In the case of a zero-gradient detonation front, 
the surface pressure immediately behind the diffracting front would be approximated by 
Eq. 2  with (or, alternatively, with infinite time-decay constants).  0=t

The time decay is characterized by two time constants 1τ  and 2τ , where the first 
refers to the decay of the pressure in the detonation products flow field, and the second 
refers to the equalization time of the reflected pressure due to the shock diffraction 
around the sphere. Since we seek the total time-integrated momentum on the sphere, the 
exponential decay factors do not have to include the deferred initial moment (of front 
arrival) at each θ. The impulse delivered to the sphere is obtained by the time 
integration around a fully embedded fragment of mass m and density ρ0 : 
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and the final diffraction phase velocity is therefore: 
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Here 1τ  is proportional to the fragment placement radius , and Sr cRS /2 ∝τ , where 
c is the sound velocity of the detonation products, and  is the spherical fragment 
radius.  is the CJ detonation pressure.  

SR

CJP
For external placement we took a similar approach. The detonation pressure is 

replaced by  at the air-products interface, ignoring the small acceleration due to 
the shock-compressed air. 

2u⋅ρ
ρ  and u are the density and the velocity of the detonation 

products. Denoting by Q the product , and using Autodyn simulations, an 
approximation 

cuQ /2⋅= ρ
)]1/(exp[)]//([3.2)( −−⋅= CCC RrskmGParQ  was found. Thus, the 

velocity imparted in this case is obtained by substituting Q for , and CJP 1κ , 2κ  for 1τ , 

2τ  in Eqs. (3,4), where Cr∝1κ  and SR∝2κ . Here r  denotes the radius of the 
expanding detonation products, and  is the initial charge radius. For transitional 
placement, i.e., for a partly embedded sphere, we perform the θ-integration separately 
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for the inner and the outer domain, with the surface pressure distribution in the 
respective domain taken as outlined above. 

Turning to the drag phase, we need an approximate model for the expanding 
detonation products flow field. We do so by invoking integral mass and energy 
conservation laws, using information about velocity and density distributions obtained 
from Autodyn simulations. Thus, the velocity distribution is taken as linear at all times. 
Defining Crr /=ξ  and assuming that the charge-air interface is at constant pressure 

 (PambPf > barPamb 1= is the ambient pressure) the detonation products expand with 
the density distribution: 
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Where  is the earliest moment for which 1t 01 =ξ , and fβ  is a constant parameter 

related to . The time  is taken here at the completion of the detonation. 
Conservation of mass requires: 

fP 0=t
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This equation can be solved for 1ξ  as a function of . We then get Cr
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When 01 =ξ , 0ρ  is replaced by 1ρ  and we assume 1ρβρ ff = , the equation for 

1ρ  is (after calculating the total explosive mass at this state): 
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The kinetic energy of the detonation products is: 
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We assume that the kinetic energy of the detonation products decreases by the amount 
of work performed in compressing the ambient air, where the latter is estimated as 
proportional to the volume of the expanding products. The products-air interface 
velocity  is then calculated from Eq. 9 as function of , which is updated in time 
according to . Assuming a constant value of the drag coefficient , the 
drag force is then given by:  

Cu Cr
dtudr CC = DC
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Figure 5. Final velocity (km/s) of a sphere embedded in or out of the charge, compared to Autodyn 

simulation 
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The density ρ is calculated according to the distribution (5), where CS rr /=ξ , and 

Cuu ⋅= ξ . The final velocity is then obtained by integrating the sphere acceleration 
, along with the relation for the sphere location mFrS /=&& dtrdr SS &= . A comparison of 

this model prediction with Autodyn simulations is shown in Fig. 5. Generally speaking, 
the agreement between the two is quite good, especially for fully internal or fully 
external placement.  For the transition zone, the model predicts a velocity peak for a 
slightly internal sphere center placement. The model clearly demonstrates the 
significant effect of the reversed acceleration due to wave diffraction around the 
spherical fragment, which is the main cause for the internal-placement velocity peak 
observed in Held's experiments. 

 
 

SUMMARY 
 

A simple gas-dynamic model for the acceleration of a fragment by explosive is 
proposed, with results that agree with Held's experimental data, as well as with 
numerical simulations. The model assumes that the fragment, initially placed at an 
arbitrary point relative to the charge face, begins to move when engulfed by the 
detonation front or the expanding explosive products. The total velocity increment on a 
spherical fragment positioned in air or within the explosive may be regarded as 
consisting of two parts: An abrupt "dynamic force" due to wave diffraction around the 
fragment, and a continuous "drag force" due to entrainment by the oncoming flow. 

Under this model, we neglect the change in the gas flow-field due to interaction 
with the fragment. This approximation is valid as long as the fragment mass is much 
smaller than the charge mass.   

While Gurney's model is aimed solely at the final velocity, we consider the time 
evolution of the products gas flow along with the gradual acceleration of the fragment.  
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