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The paper considers statistical aspects of high explosive warhead 
fragmentation. Modeling of fragment size (mass) distribution is of the 
great importance for determination of fragmenting warhead efficiency.  
Seven relevant theoretical fragmentation mass distribution models are 
reviewed: the Mott, the generalized Mott, the Grady, the generalized 
Grady, the lognormal, the Weibull and the Held distribution. 
Comparison of these models with representative experimental 
database of 30 fragmenting projectiles has shown generally very good 
correspondence between theoretical models and experimental data.  
The analysis has indicated that the generalized Mott, the generalized 
Grady and the Weibull distribution enable the best description of 
experimental fragment mass distribution data. The generalized Grady 
distribution has somewhat better results, and its bimodal characteristic 
can be physically justified. Suggested theoretical fragment mass 
distribution laws will be applied in a complex fragmenting projectile 
efficiency simulation model. 

 
 

INTRODUCTION 
 
 Modeling of fragmentation process is of the utmost importance for design, 
redesign and efficiency analysis of HE projectiles. The fragment mass distribution along 
with the initial fragment velocity, the spatial and the shape distribution of fragments, 
enables complete characterization of a fragmentation process. Fragmentation of HE 
projectile is the result of complex processes of explosive detonation, gas products 
expansion and behavior of the casing material under the intensive impulse loads. Final 
character and distribution of cracks in the projectile casing determinate shape, size and 
mass of formed fragments. There are several approaches to the fragmentation problem – 
probabilistic, energetic, approach based on fracture mechanics, etc. Having in mind the 
complexity of underlying physics, the statistical analysis based on experimental results 
seems to be a promising approach to the fragment mass distribution problem.  
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FRAGMENT MASS DISTRIBUTION LAWS 
 
Fragment mass distribution is usually described by a cumulative distribution 

function, rather than a probability density function (histogram), which is more sensitive 
to the scatter of the fragment masses data. The cumulative number of fragments 
NT(m)=NT(>m) is the total number of fragments with mass greater than m, and 
alternatively, the cumulative fragment mass MT(m)=MT(>m) is the total mass of all 
fragments with individual mass greater than m.  

In this paper, relative (normalized) cumulative distributions N(m) and M(m) will 
be used 
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where N0 is the total fragment number and M0 is the total mass of fragments. The 
relation between the cumulative distributions is 
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The average fragment mass (distribution mean), which is the most important 
characteristic of the distribution, is determined by 
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Very useful numerical property of the distribution is the median, which is defined by 
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2( )NN m =% , and 1

2( )MM m =% .     (4) 

 There are numerous distribution laws that are used to describe a real distribution 
of HE projectile fragments. The most relevant distribution laws will be outlined here. 
 Mott distribution. In his classis works [1], based on two-dimensional geometric 
statistics, Mott had formulated the well-known fragment distribution law in the form 
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 Generalized Mott distribution. Mott had argued that in three-dimensional 
fragmentation of thick-walled cylinder, where fragments do not retain the inner and 
outer surface of original cylinder, exponent ⅓ instead ½ in eq. (5) would be more 
appropriate. Introducing exponent λ in eq. (5), we get the generalized Mott distribution 
(e.g. [2], [3]) as 
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This distribution corresponds to the two-parametric Weibull distribution. 
 Grady distribution. Following Mott's approach based on a Poisson distribution of 
fracture points, Grady [4] established an alternative paradigm, defined also in [5], and 
proposed the simple linear exponential distribution 
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This distribution law is а special case of the generalized Mott distribution law (eq. (6)), 
for λ=1. 
 Generalized Grady distribution. Considering statistically inhomogeneous 
fragmentation, Grady [4] analyzed the three-parametric generalization of distribution 
defined by eq. (7) as follows: 
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 Lognormal distribution. Observing multiplicative nature of fragmentation process, 
several authors (e.g. [6]) suggested the lognormal distribution for describing the 
fragment mass distribution: 
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where erf is the error function
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 Weibull distribution. The two-parametric Weibull distribution (also known as the 
Rosin-Ramler distribution), originally used for the description of the grain size 
distribution in grinding processes, defines the normalized cumulative mass as 
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Using eq. (2), one gets the relative cumulative number of fragments: 
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In eq. (11), Г(a, x) is the upper incomplete gamma function . 1( , ) e da t

x
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 Held distribution. Held [7] had presented the relation between the cumulative 
mass and the cumulative fragment number in the form 
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where n is the cumulative number of fragments sorted in descending order, and M(n) is 
the total mass of these fragments. The mass of each particular fragment can be 
calculated by 

 ( ) ( 1)nm M n M n= − − .      (13) 

Transformation of eq. (12), using relation (2) leads to the implicit form of the 
cumulative number distribution: 
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 The review of fragment mass distribution laws is given in Table 1. The medians 
can be easily calculated form eq. (4). 
         

Table 1. Fragment mass distribution laws and their properties 
Relative cumulative 

number of fragments 
Relative cumulative mass of 
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In the earlier paper [8], it had been shown that the Strømsøe-Ingebrigtsen 

distribution [9] does not represent substantial improvement of the Mott law. It is also 
discussed that the widely applicable power-law distribution (e.g. [10]) cannot 
successfully describe HE projectile fragmentation. Finally, the Gilvarry distribution [11] 
has not been analyzed here, regarding a four-parameter fit impractical. 
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COMPARISON WITH EXPRIMENTS AND DISCUSSION 
 

In order to validate presented theoretical distribution models, a comparison with 
experimental data has been performed. It has been used experimental data from [12] (20 
projectiles), [7] (3 projectiles), [9] (3 projectiles), [3] (2 projectiles) and [5] (2 
projectiles). Although in some fragmentation analysis the fragments with the greatest 
masses are neglected (supposed as the result of irregular fragmentation), all collected 
fragments has been taken into account in this research. 

The parameters in the theoretical distribution laws are calculated by minimizing 
the deviation of the theoretical from the real distribution in the sense of the least squares 
method. Characteristic diagrams of experimental data and the corresponding theoretical 
models for typical experimental projectile are given in Figure 1. 

 

 
Figure 1. Comparison of the relative cumulative fragment number experimental data for projectile 1 [12] 
with: a) the Mott and the generalized Mott, b) the Grady and the generalized Grady, c) the Weibull and 

the lognormal and d) the Held fragment mass distribution model 
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In order to evaluate and compare the goodness of fits, the degrees of freedom adjusted 
coefficient of determination is used:  
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In eq. (16), eF is the mean of an experimental distribution, n is the number of mass 
groups and k is the number of adjustable parameters in a distribution law.  
 The survey of coefficient of determination values for the analyzed theoretical 
distribution models applied on experimental data for 30 projectiles is given in Table 1 
(target function is N(m)). Generally, all models (except the Grady's) are good 
approximation of experimental data, but the generalized Mott, the generalized Grady 
and the Weibull distribution have the highest coefficients of determination. Similar 
results are obtained from the cumulative fragment mass M(m) optimization (Figure 2), 
slightly favouring the generalized Grady distribution. This means that fragments have 
two characteristic sizes (masses), which is shown in Figure 3. Physically, finer and 
coarser fragments can be related to the central cylindrical and the residual portion of the 
projectile. Another explanation is that different fragment formation mechanisms in the 
inner and the outer section of the projectile casing influence the bimodal distribution. 
The generalized Grady distribution predicts the median Mm%  well, but the mean m  and 
the median  systematically underestimates the experimental values. The reason 
could be unreliable number of fine fragments in the smallest mass group, i.e. the mass 
of fragments that are not recovered. 

Nm%

 
Figure 2. Relative cumulative fragment mass distribution: comparison of the experimental data (projectile 

1 from [12]) and the generalized Mott, the generalized Grady and the Weibull distribution 
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Table 2. The coefficient of determination calculated for different fragment mass distribution laws and 30 
experiments. Relative cumulative fragment number N(m) has been fitted 

Coefficient of determination   
Mott gen. Mott Grady gen. Grady Lognormal Weibull Held 

1 0.9919 0.9960 0.9271 0.9994 0.9817 0.9997 0.9975 
2 0.9946 0.9946 0.9160 0.9999 0.9846 0.9995 0.9899 
3 0.9936 0.9936 0.9025 0.9992 0.9787 0.9997 0.9981 
4 0.9948 0.9957 0.9252 0.9995 0.9897 0.9994 0.9944 
5 0.9896 0.9913 0.8720 0.9994 0.9766 0.9993 0.9988 
6 0.9122 0.9951 0.9909 0.9987 0.9807 0.9980 0.9926 
7 0.4326 0.9462 0.9026 0.8959 0.9229 0.9521 0.9687 
8 0.9984 0.9985 0.9337 0.9973 0.9937 0.9996 0.9606 
9 0.9952 0.9984 0.9222 0.9970 0.9946 0.9994 0.9723 
10 0.9941 0.9984 0.9120 0.9958 0.9941 0.9994 0.9855 
11 0.9990 0.9992 0.9521 0.9985 0.9961 0.9990 0.9805 
12 0.9991 0.9991 0.9554 0.9994 0.9964 0.9995 0.9775 
13 0.9750 0.9988 0.9599 0.9997 0.9909 0.9961 0.9885 
14 0.9884 0.9996 0.9521 0.9990 0.9931 0.9959 0.9967 
15 0.9995 0.9997 0.9848 0.9998 0.9990 0.9999 0.9853 
16 0.9986 0.9986 0.9667 0.9995 0.9964 0.9999 0.9812 
17 0.8879 0.9990 0.9985 0.9990 0.9940 0.9972 0.9760 
18 0.9959 0.9971 0.8911 0.9943 0.9951 0.9931 0.9908 
19 0.9995 0.9997 0.9553 0.9999 0.9975 0.9991 0.9944 
20 0.9990 0.9992 0.9461 0.9996 0.9963 0.9998 0.9899 
21 0.9923 0.9996 0.9757 0.9991 0.9991 0.9999 0.9866 
22 0.9992 0.9999 0.9933 0.9998 0.9998 0.9999 0.9774 
23 0.9960 0.9996 0.9283 0.9930 0.9966 0.9961 0.9937 
24 0.9910 0.9980 0.9574 0.9952 0.9893 0.9964 0.9613 
25 0.9985 0.9985 0.9351 0.9960 0.9891 0.9988 0.9608 
26 0.9561 0.9894 0.8026 0.9966 0.9799 0.9964 0.9916 
27 0.9948 0.9995 0.9721 0.9979 0.9967 0.9979 0.9923 
28 0.9787 0.9886 0.9483 0.9988 0.9752 0.9961 0.9905 
29 0.9104 0.9987 0.8382 0.9707 0.9985 0.9948 0.9986 
30 0.9738 0.9992 0.9429 0.9831 0.9992 0.9961 0.9925 
Note: data for projectiles 1-20 are taken from [12] (average values for minimum 5 tests for each 
projectile); results for projectiles 21-23 are from [7], projectiles 24-26 are from [9], 27-28 from [3] and 
29-30 from [5] (test cylinders) 
 
 
CONCLUSION 
 
 The analysis of the most relevant theoretical fragment mass distribution models 
has been undertaken. Using the statistical approach based on comparison with 30 
projectiles, it has been concluded that the generalized Mott, the generalized Grady and 
the Weibull distribution give a very good description of experimental data. The slight 



WARHEAD MECHANICS 160

advantage of the generalized Grady distribution can be physically justified. The 
suggested distribution models can be applied in HE projectile efficiency modeling. 

 
Figure 3. Fine and coarse fragments components of the generalized Grady distribution fit of the 

experimental data (projectile 1[12]) 
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