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At the fundamental level, fragmentation occurs as a result of the 
initiation and growth of multiple, mutually interacting dynamic 
fractures.  The statistical distributions of fragment sizes, shapes, and 
velocities are determined by the density of cracks and the competition 
between crack growth and other modes of material deformation.  In 
this paper, we describe a three-dimensional computational model that  
allows spontaneous crack initiation and multiple cracks to coalesce to 
form fragments. 

The model is based on a relatively new theory of continuum 
mechanics called peridynamic theory.  This theory is formulated in 
terms of integral equations that remain valid in the presence of 
discontinuities in the displacement field.  This feature of the theory 
overcomes a major obstacle in the modeling of fragmentation using 
the classical theory, which is based on partial differential equations 
that cannot be applied directly to a body containing cracks.  An added 
benefit of the peridynamic approach is that crack growth is self-
guided: there is no need for supplemental equations that govern crack 
initiation, velocity, growth direction, branching, and arrest.  All of 
these features emerge directly from the equation of motion and 
constitutive model. 

This paper outlines the basics of peridynamic theory and its 
implementation in a three-dimensional meshless computer code called 
EMU.  It discusses detonation modeling and provides an application 
to fragmentation of an explosively loaded shell.  We conclude that 
peridynamic theory is a physically reasonable and viable approach to 
modeling fragmentation phenomena and envision its use in addressing 
problems of design and performance of warheads. 

 
                                                 
∗ Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for 
the United States Department of Energy's National Nuclear Security Administration under contract DE-
AC04-94AL85000. 

 95



WARHEAD MECHANICS 96

 
PERIDYNAMIC THEORY 

 
Peridynamic theory is a theory of continuum mechanics that uses integral 

equations and assumes that particles in a continuum interact across a finite distance as in 
molecular dynamics.  This theory was first published in 2000 by Silling [1].  The term 
“peridynamic” was taken from the Greek roots for “near” and “force”. 

Since peridynamic theory is relatively new compared to classical continuum 
mechanics, we will review the basics of peridynamic theory.  In the following, we state 
the fundamental equation of peridynamics and introduce the pairwise force function 
(PFF).  The PFF is the force per unit volume squared between two particles.  This 
interaction is called a bond.  Failure of a bond occurs when the stretch exceeds a value 
called the critical stretch.  Constitutive properties of a material are given by specifying 
the PFF.  Thus, in peridynamics, material response, damage, and failure are determined 
at the bond level.  We also discuss some properties of the PFF, and the material models 
that we have used for fragmentation analysis. 

 
The Fundamental Equation of Peridynamic Theory 

 
Consider a peridynamic body that occupies a domain R as shown in Figure 1.   

 
Figure. 1 A peridynamic body occupying a domain R 

 
In peridynamics, the force density on a particle at point x and time t is assumed to be 
given by 

2

2( ) ( , ) ( ( ', ) ( , ), ' ) ' ( , )x u x f u x u x x x b xρ = − − +∫∫∫ R

d t t t dV
dt

t

                                                

 (1) 

where ρ(x) is the density at x, x and  are points in the reference configuration, t is the 
time, u is the displacement vector, f is the PFF, and b is the body-force density.

x'
1  Eq. 

 
1 In eq. (1) and elsewhere, bold quantities are vectors unless stated otherwise. 
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(1) is the fundamental equation of peridynamic theory.  It is based on Newton’s second 
law for all points within the domain of analysis.  It does not contain spatial derivatives.  
The specific force is a functional depending on the PFF. 

Figure 1 shows a sphere of radius δ centered at the point x.  It is convenient to 
assume that there is a distance δ such that the PFF function vanishes whenever x and x’ 
are separated by a distance greater than δ  in the reference configuration.  The quantity δ 
is called the horizon since a particle cannot “see” any other particles beyond its horizon.   

 
Some Properties of the Pairwise Force Function 

 
It is convenient to express the PFF in terms of a new set of variables, ξ and η, 

where ξ = x′ - x  and  η = u(x′,t) - u(x,t).  ξ is the relative position of particles at x and 
x′ in the reference configuration and η is the difference in displacements at these points. 
Then η+ξ is the relative position in the deformed configuration of the particles 
originally at x and x′ , and f is a function of (ξ,η). 

Newton’s third law states that the force on a particle at x due to a particle at  
must be the negative of the force on a particle at  due to a particle at x.  This law 
implies that f(η,ξ) is an odd function of η  and of ξ.. 

x'
x'

Angular momentum must be conserved in the absence of external forces  To 
ensure conservation of angular momentum, f(η,ξ) must be parallel to η+ξ; otherwise a 
pair of particles would undergo angular acceleration in the absence of applied forces. 

 
Material Models Used in Extreme Loading Analysis 

 
A peridynamic material is said to be micro-elastic if and only there exists a scalar-

valued function w(η,ξ) such that 

                                                     ( , ) ( , )w∂
=

∂
f η ξ η ξ

η
. (2) 

w is called the micro-potential.  The derivatives in eq. (2) are not the spatial derivatives 
that are to be avoided by using peridynamic theory.  A micro-elastic material may be 
considered a material where each two points are connected by a spring that may be non-
linear.   

If a micro-elastic material is isotropic, then the magnitude of f and w depend only 
on the magnitudes of η+ξ  and ξ., but not on the directions of these vectors. 

For fragmentation analysis, we consider isotropic materials that have a PFF whose 
magnitude is proportional to a relative displacement called stretch.  Such materials are 
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called proportional materials.  The most general form of the PFF for proportional, 
micro-elastic materials is 

                    ( , )( , ) ( ), , , andg s r p rs p r
p r

−
= + = = +f η ξ η ξ η ξ ξ=  (3) 

where g(s,r) is a piecewise linear function of the stretch s.  The function g is called the 
bond force between two particles.  Figure 2 shows the bond force dependence on bond 
stretch for proportional materials.   

 
Figure 2.  Bond force for micro-elastic and micro-plastic proportional materials 

 
This figure also shows the bond force for a micro-plastic material.  The behavior of 
micro-elastic and micro-plastic materials differ only on unloading.  A micro-elastic 
material unloads reversibly back to zero stretch, while a micro-plastic material stretched 
beyond the elastic limit will retain some stretch when unloaded.  This figure also 
indicates bond failure at some value of bond stretch.  Peridynamic materials fail 
irreversibly when the stretch exceeds a value, sc, called the critical stretch. 
 
 
IMPLEMENTATION IN THE EMU COMPUTER CODE 

 
EMU is the first computer code that is based on peridynamics.  In the following, 

we review a numerical method to solve eq. (1) and summarize some important features 
of EMU. 
 
Numerical Method 

 
To solve the fundamental peridynamics equation, the computational domain is 

discretized into a finite set of nodes, {xi}.  Each node has a known volume in the 
reference configuration.  The set of nodes forms a computational grid.   

The fundamental equation, eq. (1), is replaced by a finite sum, which at time tn is 
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2
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j

d V
dt

ρ n
i= − − +∑u f u u x x b  (4) 

where ( )i iρ ρ= x , , , and V( , )n
i i nt=u u x ( , )n

i i nt=b b x j is the volume of node j in the 
reference configuration.  The sum is taken over all nodes within the horizon of xi.  The 
acceleration term in eq. (4) is approximated by an explicit central difference. 

 
Some Important Features of EMU 

 
The numerical method discussed above does not use elements, and there are no 

geometrical objects connecting the grid points.  Hence, EMU is mesh free.  There is no 
need for a mesh generator when modeling complex structures.  Only the generation of 
grid points is required. 

EMU is Lagrangian in the sense that each node contains a fixed amount of 
material.  A body contains multiple nodes and may undergo damage and fracture if 
bonds between nodes are broken.  However, the mass in each node remains constant. 

EMU uses explicit time integration to advance the solution to eq. (4) in time.  
Explicit time integration is a simple, reliable method.  A stable time-step estimate was 
obtained by Silling and Askari [2] for a linear PFF. 

EMU executes on parallel computers.  Parallelization is performed by allowing 
each processor to be responsible for fixed region of space. 

 
 

DETONATION MODELING IN PERIDYNAMICS 
 
A peridynamic detonation model was developed and implemented in EMU.  Since 

the detonation products in an explosion are gases, we first discuss modeling gases as 
bond-based, peridynamic materials.  We then summarize the principle components of 
the model: input, detonation propagation, and behavior of detonation products [3]. 

 
Gases as Peridynamic Materials 

 
The micro-potential has units of energy per unit volume squared and represents 

the internal energy density associated with a bond.  To obtain an expression for the 
PFF, let all the bonds be held fixed except for bond k.  Then, the change in energy 
density when bond k is stretched dpk is 

              1 2, which implies
2 k k k k k

k k

dW X dW XdW f dp V dp f
dX p V dX pk

∂ ∂
= ∆ = =

∂ ∆ ∂
 (5) 
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where fk, is the PFF for this bond, ∆Vk is the reference volume of node k, X = ρ0/ρ is the 
expansion, and ρ and ρ0 are the respective deformed and reference densities.  The one 
half is present in eq. (5) since each node owns half the energy of the bond. 

Eq. (5) implies that the PFF of a gas depends on how the internal energy per unit 
volume of the gas changes with the expansion of the gas (X).  There are many ways to 
approximate the expansion.  We approximate X as 

                         

3/
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where the sum is taken over the nodes inside the horizon of the given node, pj = |ηj+ξj|,  
and rj = |ξj|.  A value of m = 1 is used in the current version of EMU. 

The expansion of the gas is generally represented as an isentropic process.  Since 
the derivative of the internal energy with respect to specific volume at constant entropy 
is minus the pressure (P) [4], the expression for fk in eq. (5) and eq. (6) imply that 

                                                
1
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− −
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⎝ ⎠
X . (7) 

Implementation of (7) requires knowledge of P as a function of X for an isentropic 
process.  In the initial implementation, we consider gases to be ideal gases.  Then, the 
pressure is P = P0Xγ, where P0 is the initial pressure and γ is the ratio of specific heats. 
 
Peridynamic Detonation Model 

 
For each explosive material, the user provides the location of the detonation point 

and time of detonation initiation along with the density of the unreacted explosive and 
the detonation speed.  The user may also specify the temperature, Chapman-Jouguet  
(CJ) pressure (PCJ) and the ratio of molar specific heats of the detonation gases (γ).   

The detonation times at the explosive material nodes are calculated using program 
burn.  In program burn, detonation times are calculated during input processing using a 
Huygen’s construction procedure.  In this procedure, the detonation propagates from the 
initial detonation point spherically at the specified detonation speed.  This construction 
permits detonations to propagate around obstacles. 

When detonation occurs, the gas expands adiabatically from one half the CJ 
pressure.  The initial pressure is set to this pressure to obtain the correct energy in the 
ideal-gas reaction products from the detonation process.  The peridynamic force on each 
gas node is obtained from this pressure and eq. (7). 
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FRAGMENTATION OF AN EXPLOSIVELY-LOADED SHELL 

 
Consider an explosively-loaded shell with cross section depicted in Figure 3.  We 

performed an EMU simulation of the system’s motion for about 89 ms after detonation.  
For the simulation, the shell is considered a micro-plastic peridynamic material with 
density 8000 kg/m3, sound speed 4000 m/s, yield strength 400 MPa, and critical stretch 
0.3, and the explosive is considered a peridynamic explosive material with an unreacted 
density 1785 kg/m3, detonation speed 8747 m/s, detonation pressure 31.66 GPa, and γ = 
3.3. 

 
Figure 3.  Cross section view of an explosively-loaded shell 

 
Figure 4 compares simulation results with radiographic images from a test.  The 

radiographic image is shown on the left and steel material from the EMU simulation is 
shown at the closest corresponding times, about 27.3 ms and 45.1 ms.  This figure 
shows very good agreement between the image and the EMU results.   
 

 
Figure 4.  Comparison of radiographic image (left) and EMU simulation results 

 
Since a grid of any significant size may form a large number of fragments that are 

difficult to comprehend on the basis of plots, some statistical tools have been developed 
to help in the interpretation of results.  These tools include cumulative distributions of 
volume, size, and mass of fragments and velocity distributions of fragments. 

Figure 5 shows a velocity distribution at about 50 ms.  Each fragment is plotted on 
the (θ, φ) plane as a circle.  The location of the center of the circle gives the direction of 
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the fragment’s velocity vector in terms of these angles.  The radius of the circle is 
proportional to the kinetic energy of the fragment. 

 
Figure 5.  Velocity distribution at about 50 ms 

 
Two tests that collected fragments were performed for the shell shown in Figure 3.  

We performed simulations to determine the sensitivity of fragmentation to critical 
stretch and other EMU inputs.  Figure 6 compares the calculated mass cumulative 
distributions with data for five values of the critical stretch ranging from 0.05 to 0.4.  
The results for a critical stretch of 0.1 agree well with the data. 

 
Figure 6.  Sensitivity of fragmentation to critical stretch 
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