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Abstract 

The most effective bore cross-section geometry for electromagnetic (EM) 
guns may differ significantly from the circular cross section of conventional 
guns. The geometry of the bore cross section will influence the shape of the 
armature/subproject launch package. For certain applications, a noncircular 
cross section may provide payload packaging benefits which have not been 
considered previously for conventional circular cross-section guns. Whether 
these benefits can be fully realized depends, in part, on the aerodynamic 
performance of these geometries in free flight. The current study considers the 
aerodynamics of chemical energy (CE)-type munitions to determine whether 
there are potential aerodynamic benefits for noncircular cross-section geometries 
compared with conventional circular cross-section bodies. The study compares 
the aerodynamic drag and static stability of both circular and noncircular 
geometries using sophisticated computational aerodynamic predictive tools to 
determine the potential aerodynamic benefits. 
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1. Introduction 

The U.S. Army is currently investigating electromagnetic (EM) guns as a means 
of increasing the lethality of its weapon systems. Currently, the geometric 
configuration of EM guns is a subject of research. In particular, the bore cross 
section of these guns may not be circular as with most conventional powder 
guns, but rather may possess a square or rectangular cross section. The 
geometry of the bore cross section will directly influence the shape of the 
armature/subprojectile launch package. For certain applications, the noncircular 
cross section may provide payload packaging benefits which have not been 
considered previously for conventional circular cross-section guns. Whether 
these benefits can be fully realized depends on a number of factors. One of the 
considerations is the aerodynamic performance of these geometries in free flight. 

The current study considers the aerodynamics of chemical energy (CE)-type 
munitions to determine whether there are potential aerodynamic benefits for 
noncircular cross-section geometries compared with conventional circular cross- 
section bodies. For instance, it may be possible to package explosively formed 
projectile (EFP) warheads more effectively in a noncircular geometry than in a 
conventional circular geometry. The study compares the aerodynamic drag and 
static stability of both circular and noncircular geometries using sophisticated 
computational aerodynamic predictive tools to determine the potential 
aerodynamic benefits. 

The geometry of the baseline circular cross-section geometry is shown in 
Figure 1. The geometry consists of a conical nose/cylinder/boattail/tail 
boom/fin assembly which approximates the geometric characteristics of modem 
CE-type munitions. Two noncircular cross-section geometries have also been 
considered. These noncircular bodies share similar geometric characteristics 
with the circular cross-section geometry. The noncircular cross-section 
geometries were obtained by extruding the baseline circular cross-section 
geometry through a square cross section of width 43 mm and 50 mm, 
respectively. A schematic of the circular and two noncircular cross sections is 
shown in Figure 2. The 43-mm geometry results in a nearly square cross section 
over the cylindrical portion of the body, while the 50-mm geometry results in a 
square cross section with rounded comers. Both noncircular cross-section 
geometries have circular cross sections on the conical nose and on the boattail 
when the local diameter of the cross section is less that 43 mm and 50 mm, 
respectively. 
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ALL DIMENSIONS IN CALIEERS (ONE CALIBER = 120 mm) 

Figure 1. Schematic illustration of the baseline circular cross-section flight body. 

Figure 2. Schematic illustration of the noncircular cross-section geometries. 

A fixed fin planform is utilized for all configurations. The fins are oriented in an 
x-configuration with respect to the noncircular cross-section geometries. This 
allows the fins to have maximum span without interfering with the walls of the 
bore. The fin geometry chosen here represents only one option for fin 
stabilization. It may be possible to utilize folding fins which have a larger span 
than the bore cross section when deployed in free flight. Nevertheless, the 
results presented here using the non-folding fins should provide a good basis for 
evaluating the effects of the noncircular cross section on the aerodynamics of the 
projectile. 

Two additional circular cross-section bodies were considered for the purpose of 
comparisons. These,bodies have the same cross-sectional area as each of the two 
noncircular cross-section bodies at each axial station along the body. As a result, 
the bodies have the same total volume as the corresponding noncircular cross- 
section bodies. For all the geometries considered, the same tail boom and fin 
assembly were used. 
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The current study assumes that a functional armature could be built for the 
geometry under consideration, perhaps a discarding pusher-type armature 
which might be located between the boattail and the fins. Obviously, for an 
optimal design, the subprojectile and armature design must be considered 
simultaneously. This also implies that the characteristics of the gun are defined 
as well. However, the focus of the current investigation is on the effect of the 
noncircular cross section on the aerodynamic performance of the flight body. 
This study should be viewed as a first step for considering the viability of 
noncircular cross-section geometries for EM gun applications, thereby justifying 
assumptions regarding the launchability of the geometry under consideration. 

2. Computational Approach 

Computation of the viscous flow field about the various projectile configurations 
was accomplished by solving the thin-layer Navier-Stokes equations using the 
parabolized Navier-Stokes (PNS) technique of Schiff and Steger [l]. Using the 
PNS technique, computational results were obtained by marching through the 
grid from the projectile nose to the trailing edge of the fins. This technique is 
applicable in the supersonic flow regime and requires that the flow field contain 
no regions of flow separation in the axial direction. Because the computational 
approach requires only a single sweep through the computational grid, it is very 
efficient compared with time-marching approaches that require many sweeps 
through the grid. The technique has been applied successfully to a number of 
projectile configurations, including axisymmetric shell [2, 31, flared projectiles 
[4], and finned projectiles [3]. The technique has also been applied previously to 
predict the aerodynamic performance of a railgun-launched noncircular 
cross-section projectile [5]. 

As is standard practice, prediction of the static aerodynamic coefficients such as 
drag, pitching moment, and normal force coefficients are performed by 
computing the flow field about the projectile at a fixed angle of attack. 
Assuming a time-invariant flow field, the steady thin-layer Navier-Stokes 
equations are applied as shown in equation 1: 

(1) 

The thin-layer Navier-Stokes equations are obtained by eliminating from the full 
Navier-Stokes equations, all the viscous terms except for those containing 
derivatives in the direction nearly normal to the projectile body. For high 
Reynolds number flows with no axial flow separation, the thin-layer Navier 
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Stokes equations are very good approximation to the full Navier-Stokes 
equations, and can be efficiently solved using available numerical algorithms. 

Here, 6, l?, and 6 are the inviscid flux vectors, and i is the viscous flux vector. 
Each of these matrices are functions of the dependent variables represented by 
the vector s(p, pu, pv, p-5 e), where p and e are the density and the total energy 
per unit volume, and u, v and w, are the velocity components in x, y, and z 
directions. 

The pressure, p, which appears in the flux terms, can be related to the 
dependent variables by applying the ideal gas law: 

p=(y-1) e-“(u2 +v2 +w2 
[ 

. 
2 )I (2) 

A turbulent boundary layer has been simulated over the projectile body using 
the turbulence model of Baldwin and Lomax [6]. 

The thin-layer equations are solved using the PNS technique of Schiff and Steger 
[l]. Following the approach of Schiff and Steger, the governing equations are 
solved using a conservative, approximately factored, implicit finite-difference 
numerical algorithm as formulated by Beam and Warming [71. The 
computations presented here were performed using a shock-fitting procedure 
reported by Rai and Chaussee [S]. This procedure solves the five Rankine- 
Hugoniot jump conditions, two geometric shock-propagation conditions, and 
one compatibility equation to determine the values of the five dependent 
variables immediately behind the shock, as well as the position of the shock. 

For the computational results presented here, the grid consisted of 60 points from 
the body to the shock. On the forebody, 72 grid points were utilized around the 
body in the circumferential direction. To capture the details of the fin geometry, 
280 grid points were used in the circumferential direction. 

In the marching (axial) direction, 470 marching planes were required for each 
caliber of body length. Over the axisymmetric portion of the body, the grid was 
generated algebraically. On the non-conical portion and finned portion of the 
body, the grid was obtained using an elliptic grid generator [9]. A complete 
computation for each configuration required approximately 2 hr of computer 
processor unit (CPU) time on a Cray C-90 supercomputer. 

3. Results 

Predictions of the aerodynamic performance of the flight bodies were made at 
flight velocity of Mach 3 at standard atmospheric launch conditions (ambient 
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temperature of 70 “F). A constant wall temperature of 70 “F on the body surface 
was used in all the simulations. A constant angle of attack of 2” was used to 
generate the transverse forces and moments. 

3.1 Aerodynamics of the Baseline Circular Cross-Section Geometry 

Each of the geometries considered here have similar aerodynamic characteristics. 
Before comparing the aerodynamic performance of each of the designs, it is 
useful to examine the aerodynamic characteristics of the baseline circular cross- 
set tion configuration. 

Figure 3 shows the development of the drag over the baseline configuration. 
Most the aerodynamic drag is produced by the wave drag on the conical nose of 
the vehicle. The boattail also produced a significant amount of drag due to the 
low pressure produced by the flow expansion on the boattail. The amount of 
drag from the nose and boattail is dependent, in part, on the cross-sectional area, 
so that reductions in the cross-sectional area may result in improvements in the 
aerodynamic performance. The skin friction and fin drag account for only a 
small portion of the total drag. An estimate of the base drag indicates that the 
expected base drag is about 4% of the forebody drag. The base drag is not 
included in the plotted drag coefficient data. Computational predictions of the 
axial force coefficient at 0” and 2” showed less 1% difference. Because of the 
small differences in the axial force coefficient at small angles of attack, drag 
coefficients predictions were obtained using the axial force coefficient from the 
2” angle-of-attack solutions for the other body geometries. 

o.ou 
0.0 2.0 4.0 6.0 8.0 10.0 l2.0 

X/D 
Figure 3. Development of the drag coefficient over the baseline circular cross-section 

geometry. 



CE-type munitions are usually made aerodynamically stable using tail fins. 
When the projectile is at angle of attack, the tail fins must produce sufficient 
normal force aft of the projectile’s center of gravity to counteract the nose normal 
force produced in front of the center of gravity. By examining the distribution of 
the normal force, the relative contribution from each component of the body can 
be examined. Figure 4 shows the normal force distribution for the circular cross- 
section geometry. The conical nose and cylindrical portion of the body produce 
significant amounts of lift on the forward portion of the body. Some of this lift is 
lost over the boattail. The stabilizing fins produce a significant amount of lift 
which is required to balance the nose lift in order to maintain aerodynamic 
stability. 

3.0 

%x 
2.0 

1.0 

0.0 
0.0 2.0 4.0 6.0 8.0 10.0 120 

X/D 

Figure 4. Development of the normal force coefficient over the baseline circular 
cross-section geometry. 

The balance between the lift produced by all the body components is reflected in 
the pitching moment about the center of gravity of the body. A negative pitching 
moment coefficient is required for aerodynamic stability and indicates that the 
fin lift provides sufficient moment to offset the moment produced by the nose 
lift. Figure 5 shows the distribution of the pitching moment coefficient over the 
baseline circular cross-section geometry. The conical nose and the cylinder 
produce a destabilizing moment due to lift in front of the center of gravity. The 
boattail also provides a destabilizing moment by producing negative lift aft of 
the center of gravity. The tail fins produce sufficient lift to offset the 
destabilizing moment from the front of the body, resulting in aerodynamic 
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Figure 5. Development of the pitching moment coefficient over the baseline circular 
cross-section geometry. 

stability for the complete configuration. The level of aerodynamic stability is 
comparable to conventional CE munitions. 

3.2 Comparison of Aerodynamics Between Circular and Noncircular 
Geometries 

The effect of noncircular cross sections on aerodynamic performance was 
examined by comparing the performance of the two noncircular cross-section 
geometries with the performance of the baseline configuration. Two additional 
circular cross sections that had the same local cross-sectional area as the 
nonconical geometries were also considered. 

Figure 6 shows the development of the drag coefficient over the baseline circular 
cross-section body and the two noncircular cross-section bodies. The circular 
cross-section geometry has the highest drag because of its large frontal area. The 
two noncircular cross-section geometries show progressively reduced drag as the 
frontal area is reduced. The drag reduction occurs primarily on the conical nose 
with some additional drag reduction on the boattailed portion of the body. The 
tail boom and fin assembly for all three bodies produce nearly identical 
contributions to the drag of the vehicle. 

Figure 7 shows a comparison of the drag for the noncircular cross-section 
geometries with circular cross-section geometries that possess the same local 
cross-sectional areas. In each case, the drag for the noncircular cross-section 
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Figure 6. Development of the drag coefficient over the baseline circular cross-section and 
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Figure 7. Development of the drag coefficient over the noncircular cross-section 

geometries and equivalent cross-sectional area circular geometries. 
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body is greater that the corresponding circular cross-section geometry with the 
same local cross-sectional geometry. The drag increase occurs primarily on the 
conical nose with slight increase in drag on the boattailed portion of the body. 
The results seem to imply that if the payload is a fixed volume whose geometric 
shape is not constrained, such as high explosive, the configuration exhibiting the 
lowest drag will be a circular cross-section body. However, payloads with a 
noncircular cross-sectional geometry, such as an EFP warhead, may be 
effectively packaged in a noncircular cross-section flight body to yield improved 
drag performance relative to circular cross-sectional geometries. Most of the 
drag saving will result from the reduction of cross-sectional area on the nose of 
the flight body. 

The results for the three circular cross-section geometries show that as the cross- 
sectional area of the nose is reduced, the pitching moment coefficient becomes 
increasingly more negative yielding more stability for the configuration, as 
shown in Figure 8. Most of the increased stability is due to the reductions in the 
nose lift produced by the reduced cross-sectional area of the nose, as shown in 
Figure 9. The configurations with the smaller cross-sectional area show a small 
increase in the stabilizing moment from the fins, which are presumably due to 

with the fins to reduce the reduction in the wake from the nose that interacts 
their effectiveness. 

6.0 1 

BASELINE CIRCULAR BODY’\: 
-4.0 ----------.. EQUIV. CIRCULAR BODY - %mm 

-.-.- 

-6.0 ’ 1 
EQIJJ. CIRCULAR BODY - 43mm 

I I I I I 
0.0 2.0 4.0 6.0 8.0 10.0 li0 

Figure 8. Development of the pitching moment coefficient over the circular cross-section 
geometries. 
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/ I I I I I I 1 
0.0 2.0 4.0 6.0 8.0 10.0 12.0 

X/D 
Figure 9. Development of the normal force coefficient over the circular cross-section 

geometries. 

The relative stability of the baseline circular cross-sectional geometry and the 
noncircular cross-section geometries is compared in Figures 10 and 11. The 
results show that as the cross-sectional geometry of the nose is reduced, the 
moment contribution from the nose lift is reduced yielding more stability. This is 
a similar trend as that observed for the circular cross-section geometries. 
However, the moment contribution from the fins appears to be significantly 
affected by the noncircular cross section of the nose. The circular cross-section 
geometry produces a more stabilizing moment from the fin than the noncircular 
geometries with the square cross-section geometry producing the least 
stabilizing moment. This appears to be due to an interaction of crossflow 
separation vortices produced at the corners of the noncircular cross section with 
the fins. Figures 12 and 13 show crossflow particle traces at an axial station 
7.5 cal. from the nose and immediately in front of the fins for the circular and 
43-mm noncircular cross-section bodies, respectively. The crossflow particle 
traces show the presence of two lee-side crossflow vortices for the circular cross- 
section body (Figure 12). Lee-side crossflow vortices are fairly common on 
slender flight vehicles and produced by a crossflow separation from the 
crossflow wake. The noncircular cross-section body also has two lee-side 
vortices as well as two vortices on the windside of the body (Figure 13). i 
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Figure 10. Development of the pitching moment coefficient over the baseline circular 
cross-section and noncircular cross-section geometries. 
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Figure 11. Development of the normal force coefficient over the baseline circular cross- 

section and noncircular cross-section geometries. 
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Figure 12. Crossflow particle traces at X/D=7.5, circular cross-section body, Mach 3, 2” 
angle of attack. 

Figure 13. Crossflow particle traces at X/D=7.5, 43-mm noncircular cross-section body, 
Mach 3, 2” angle of attack. 
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3.3 Effect of Roll Orientation on Aerodynamic Performance 

For completely axisymmetric bodies, the aerodynamic performance of the flight 
body will be independent of roll orientation. (This behavior is limited to 
small-to-moderate angles of attack where the lee-side vortices are symmetric.) 
For noncircular cross sections, the aerodynamics may exhibit some dependence 
roll orientation. If the body’s roll rate is above the pitching frequency, the effect 
of roll orientation is often averaged out. If the body is not rolling, the effect of 
roll orientation on the aerodynamics may be more important. Computations 
were performed to assess the effect of roll orientation. The computations 
presented previously were performed with the body oriented in the 
“x orientation” with respect to the pitch plane. In other words, the pitch plane 
was oriented between the fins and the comers of the noncircular cross section. 
Additional computations were performed with the body rolled at 22.5” and 45” 
from the x orientation. The 45” roll orientation is often referred to as the 
“+ orientation” since the fins and comers aligned with the pitch plane. 

The baseline circular cross-section body showed some rolI orientation 
dependence in the normal force and pitching moment over the finned portion of 
the body as shown in Figures 14 and 15. This is not completely unexpected 
since the fin lift should be affected by the orientation of the fins with respect to 
the lee-side vortices. With the fins oriented in the + orientation, the horizontal 
(lift producing) fins are below the lee-side vortices. In the x orientation, the two 
lee-side fins are located within the lee-side vortices. As a result, the normal force 
coefficient increases by 3.4% compared with the x orientation. Because of the 
long moment arm from the center of gravity (CG) to the fins, the pitching 
moment increases by approximateiy 30%. 

The normal force and pitching moment coefficients for the noncircular 
cross-section body displays dependence on roll angle over both the forebody 
and the fins as shown in Figures 16 and 17. It is interesting to note that the roll 
dependence in the transverse force and moment on the forebody occurs 
downstream of the noncircular cross section, rather than on the portion of the 
body with the noncircular cross section. This is likely due to differences in the 
wake and vortex patterns between the various roll orientations. The variation of 
the normal force and pitching moment coefficient with roll angle is actually less 
than that of the baseline circular cross-section body. 

The simulations showed very little effect of roll orientation on the axial force at 
2’ angle of attack (less than 0.2%) for either the baseline circular cross-section 
body or the 43-mm noncircular cross-section body. 
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Figure 14. Effect ok roll orientation on the development of the normal force coefficient 
over the baseline circular cross-section geometry. 
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Figure 15. Effect of roll orientation on the development of the pitching moment 
coefficient over the baseline circular cross-section geometry. 
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Figure 16. Effect of roll orientation on the development of the normal force coefficient 

over the &mm noncircular cross-section geometry. 
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Figure 17. Effect of roll orientation on the development of the pitching moment 

coefficient over the baseline circular cross-section geometry. 
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4. Conclusion 

The study presented here demonstrates the potential for aerodynamic benefits of 
noncircular cross-section bodies when compared with circular cross-section 
bodies. The results show that significant reduction in drag is possible through 
the use of a noncircular cross section under certain constraints. In particular, if 
the geometric constraints of the payload conform more readily to a noncircular 
cross-section body, there is a potential for aerodynamic benefits such as 
improved stability and drag reduction. If the payload is not geometrically 
constrained and can fit in a fixed volume, the results indicate that a circular cross 
section provides optimal aerodynamic performance. 

For the particular configurations examined here, the transverse aerodynamic 
force and moments for the noncircular cross-section bodies did not display a 
significant dependence on roll orientation. In fact, the roll dependence produced 
by the roll orientation of fins produced a more significant effect than the roll 
orientation effects of the noncircular body cross section. 

Finally, this particular study was performed using sophisticated computational 
tools. The results indicate that some of the aerodynamic effects demonstrated 
here can be predicted using simpler aerodynamic models although others 
cannot. Thus the use of sophisticated tools, even in preliminary or conceptual 
aerodynamic design, may be justified, particularly when the configurations of 
interest are sufficiently different than those of typical interest. 

c 
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