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Summary— In this paper, a theory for one-dimensional penetration of long-rods into targets of
finite thickness (plates) is developed. The target is defined as a “finite” mass that resides within
the bulk of the target so that an equation of motion for the target mass can be constructed. This,
together with an equation of motion for the penetrator and erosion equations for the two masses,
provides a penetration solution for the finite-thickness target problem. The axial extent of the target
mass is simply the thickness of the plate. Results provide expected penetration rates into plate
targets, as well as unpenetrated target thickness (plug or spall) and residual penetator length, mass,
and velocity. Good agreement was found between the theory, hydrocode results and experimental
data. Also, the formulation becomes hydrodynamic penetration in appropriate limits and therefore
encompasses jet penetration of these targets as well.

NOTATION

Ap A A. rod, target, and plug cross-sectional areas
A, Ay}  plug contact surface areas
d. d, diameters of rod and plug
E; energy dissipated in the fracture process
lo. 1. I, initial, intermediate, and residual rod lengths
I [ specific rod lengths during penetration process
M, M. intermediate and residual rod masses
M, M. intermediate and residual target masses
M, target mass for plate beyond the critical thickness
P, P¢  erosion of the semi-infinite and finite-thickness targets
S, strength of rod, target, and target (shear)
t  time
uy, u  initial and intermediate target erosion rates
v, U, e initial, intermediate, and specific rod velocities
v, v, residual rod velocities based on momentum and energy
w  target material velocity in laboratory frame
Xg, X, X,, X, initial, intermediate, and final lengths for critically thick target
v plug displacement
, 2z, z,  initial, intermediate, and final target thicknesses
Py o densities of rod and target

INTRODUCTION

The impact of long rods with targets of finite thickness (plates) has been investigated
extensively through experimental observation, analytic modelling, and hydrocode computer
analyses. The features that appear behind the rear of the target or “residual properties”
are of considerable importance, and it is desirable to establish a relationship between these
and the initial conditions of the problem such as rod and target geometries, material
properties, and rod striking velocity, for example.

The semi-empirical equation of Lambert and Jonas [1] provides a means to estimate
residual properties but does not address dynamics of penetration and perforation. Elsewhere,
mechanistic models developed by Recht and Ipson [2], Awerbuch and Bodner [3],
Woodward and de Morton [4], and Woodward et al. [5) provide insight into the plate
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perforation problem at relatively low impact velocities where it is possible to include the
role of material failure mechanisms in the perforation process. The models provide projectile
exit velocity based on an energy balance which includes the kinetic energy of the penetrator
prior to impact and the mechanical work performed in material deformation and failure
processes. Although these approaches have provided qualitative agreement with
experiments [5], general application throughout wide ranges of impact conditions has not
been examined. The finite-thickness target problem has posed difficuties for hydrocode
analysis as discussed by Anderson and Bodner [6] and Anderson et al. [7], particularly
for the perforation part of the problem, which depends critically upon having adequate
material failure models in the code.

In prior work, the author of this paper [8] developed a one-dimensional, nonsteady
theory for long-rod penetration into semi-inifinite targets. This paper uses some of those
concepts to develop a theory for long-rod penetration and perforation of finite-thickness
largets.

BASIC RELATIONS

The various stages of plate perforation as outlined by Ravid and Bodner [9] are grouped
into three main events and addressed here in the following order: (1) initial penetration
into the target plate, wherein the rod and target undergo erosion, (2) failure of the uneroded
target material during a process of perforation, and (3) momentum or energy exchange
between uneroded rod and target masses. The penetration solution provides remaining
rod and target masses and velocities at the end of the initial penetration which are used
to initiate momentum and energy exchanges that follow.

For the initial penetration, the finite-thickness target is defined to have a “finite” mass
that resides within the bulk of the target and is disposed in cylindrical form about the
impact axis. The target mass extends through its thickness to its rear surface. Figure 1
shows the impact geometry and variables used. Initial values are defined as penetrator
length [, target thickness z,, penetrator striking velocity v, and penetration velocity u,.
At an intermediate time t, associated values are uneroded penetrator length I, uneroded
target length z, penetrator mass M, target mass M,, penetrator velocity v, and rate of
target consumption or erosion rate u. The penetrator density is p,, and the target density
is p. A coordinate system is chosen so that its reference point is located at the
penetrator-target interface. It is assumed that throughout penetration, this interface
translates with constant velocity in the laboratory frame of reference which is taken to
equal the initial penetration rate u,. Thus, penetrator material flows into the interface at
a rate (v—u,), while the accelerating target mass flows at a rate of u. Relationships between
the velocities in the interface and laboratory frames of reference are shown in Fig. 2. In
this analysis, the detailed wave reflections are being averaged out.

The traditional view of penetration would provide for an interface that varies slowly in
a “quasi-steady” fashion initially with a “non-steady” behaviour toward the end, particularly
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Fig. 1. Impact geometry defining “finite” target mass and variables for the finite-thickness target
(z) and the critically thick target (x).
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TARGET TARGET

{a) LABORATORY (b) INTERFACE

Fig. 2. Relationship between velocities relative to (a) the laboratory frame of reference, v, uo, w,
and (b) the moving interface of reference, (r —u,) and (u). The interface translates with velocity u,,
with respect to the laboratory.

for very thick or semi-infinite targets which are stationary. In the current analysis for
finite-thickness targets, the non-steady character is in the quantities v —u, and u, while the
interface is assumed to travel at constant velocity u, throughout penetration since the
target material is allowed to react to the penetrator, accelerate, and gain velocity. While
there is no expermental evidence to confirm or refute the assumption, CTH calculations
done thus far, and presented subsequently, are supportive for targets having thickness-to-
penetrator diameter ratios as high as 6.5 under penetrator impact velocities as low as
1200 m/s.

The rate of momentum change for the penetrator is that developed by Tate [10], but
is expressed here relative to the moving interface as

M S(v—uo)= -S

v, Ap, (1)

P

where S, is a measure of penetrator strength and 4, is penetrator original cross-sectional
area such as —S_ A, is the force applied to the penetrator. Penetrator mass is eroded
according to

dl
Y —(v—uy). 2

For the target system being introduced here, the time rate of change of momentum has
similar form to that of the penetrator and is expressed as

du
‘Ez _StAv 3)

under the condition that shear stresses acting on the target’s cylindrical surface during the
penetration phase are neglected. Also, S, is a measure of the target strength, A, is the target
area (not necessarily through hole or final cavity area), and —S§,4, is the force applied to
the target mass. For the finite-thickness target, mass erosion is given by

dz
- 4
dr ! @

At any time during the penetration process, penetrator mass is M =p A4 I, while target
mass is M,=p,A,z.
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The mass definitions and Eqns (1)(4) provide separated equations of the form

S_dl
(0—1g) d(v —ug) ===, 5)
Py !
S.d
wdu="2 (6)
Pz

Integration of Eqns(5) and (6) gives trajectories for penetrator and target masses,
respectively, as

28 142
v—uoz(vs—uo)l:l+—"—21n(l/lo)] , (7
pp(vs— u())
28, 12
u=u0[1 +—21n(z/zo):| . (8)
Pito

If the starting time is t,=0 at initial contact of the rod with the target front surface, then
time ¢ for penetration based on penetrator erosion rate from Eqn(2) and target erosion
rate from Eqn (4) is

| 21
t=— di=— | -dz 9)
(0 —uy) U

The initial penetration rate u, is given by a semi-empirical relation which may be found
in previous work [87]. Equations (1) through (9) represent basic relations for rod penetration
into finite-thickness targets. Equations (7) and (8) provide first integrals of motion for the
penetrator and target, respectively. The variables in the penetrator equations are
independent of those for the target up through Eqn (8), but could be connected through
the Time Eqn(9). As will be discussed later, this presents some difficulty. Thus, v and u
will be related through a subsequent development which connects | and z. Thus far,
assumptions include the following: (1) target mass of importance is finite, its axial extent
is the plate thickness, its lateral extent resides within, but is otherwise isolated from, the
target surroundings, (2) no shear stress acts on the defining boundary surface, (3) impact
stresses are greater than penetrator and target strengths throughout the penetration process,
and (4) the penetrator-target interface translates with constant velocity during the
penetration process.

UNERODED TARGET THICKNESS

For the finite-thickness target, uneroded target thickness is defined as the final target
length at the end of the penetration process. This definition accounts for erosion, plastic
flow, or any other mechanism that removes material from the one-dimensional axis and
therefore reduces the column length of target material. Thinning of target material by
stretching of the bulge is considered a post-penetration process and therefore is not included.
The final reduced target length results from the interface (penetrator nose) continuing to
act on the column length of the target up to the point when target erosion stops, u=0.
Thus, the final uneroded target thickness (potential or actual plug thickness) is determined
from Eqn (8) when u=0 as

zczzoexpl:—z%—ug], (10)

where z, is the final thickness of the target. The total erosion of a target of finite thickness
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Fig. 3. Target configurations showing relationship between thickness definitions and target erosion
for the three possible cases.

P;=1z,—z, has the following analytic solution:

szzol:l—exp( —2—pS‘—u3>j| (n
1

Since, by Eqn(11), P; can increase without limit as z, is increased for thicker target
cases, a critical plate thickness x, is stipulated to prevent the target erosion P; from
exceeding a maximum value. The measure of that maximum is taken to be the penetration
associated with the semi-infinite target, P,. This notion is depicted schematically in Fig. 3
where targets of less or greater thickness than the critical one are introduced. The final
uneroded target thickness for a target of x, thickness is designated x,. Thus, when zy=x,,
Eqn (10) gives

xazxoexp[—ﬂuéjl. (12)

Further, P,=x,—Xx, provides the maximum possible erosion of a finite-thickness target
and defines the thickness of the critically thick target as

p
Ps=x0|:1—exp<—2—5:tué>jl. (13)

The thickness x, 1s determined by P,, which can be obtained from semi-infinite target
penetration data or from penetration theories [8,10].

It is recognized that plate thickness can arbitrarily exceed x,, but even so the target
erosion will be limited to P,. Thus, when plate thickness z, exceeds x,, each increment of
thickness beyond x, produces a one-to-one increase in uneroded target thickness. The two
cases of interest for the final plug thickness follow from Eqns(10) and (12) and Fig. 3:

P o
Zog KXot zZ,=z exp[——uo], (14)
0 Xo 0 25,
> - _ P2
Zg 2 Xg: z,= xoexp[ s uo}d- (zo—Xo)- (15)
t

For constant impact conditions, Eqn(14) gives a linear relationship between plug
thickness and initial target thickness. The slope is given by the exponential term. Beyond
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Zo=2Xxg, as seen by Eqn(15), the slope equals 1. Equation (14) further suggests that an
exponential decrease in plug thickness is expected with increased striking velocity since ug
has a near linear dependence on v, [8]. In the limit of very high velocity impact or when
target strength is low, Eqns (14) and (15) provide hydrodynamic results as expected for
20K Xg: 2. =0, and for zy>xq:z,=2,— Xg, Where Eqn (13) gives P,=x, at those limits. It
should be noted that within the context of the theory as represented by Eqn (13) and the
mass definition M,=p,A,z, the solution is taken to be exact up to the point z,=x, The
solution is used to explore small increases in z, beyond x,, as an approximation. The
solution becomes progessively less accurate with further increases in zy beyond x,,.

When z, < x4, no new assumptions beyond those of the previous section were required.
For z4>x,, it was assumed that uneroded target thickness includes a portion based on
7o =X, Where a maximum target erosion occurs plus an additional amount corresponding
to excess thickness of the plate beyond that which permits the maximum erosion.

RESIDUAL ROD LENGTH

The penetrator’s final or residual length is determined by the amount of erosion that
takes place during the penetration process. The erosion depends upon target thickness
since thin targets are penetrated over a small time interval as compared with thick ones.
During the penetration process, impact stresses are sufficiently large so that Eqn(7) is
assumed to apply over the entire range of target thickness. Thus, rod deceleration and
erosion rate are independent of target thickness while penetration is in progress, but the
final rod velocity and total erosion will depend upon target thickness since the time for
penetration varies with target thickness. Such assumed rod behaviour is consistent with
observations by Anderson et al. [7] regarding CTH calculations of rod motions under
similar circumstances.

The residual rod length [, and its corresponding velocity ¢, at the end of penetration
are Jocated between two limits. When the plate has zero thickness, the respective quantities;
are I, and v, For plates of large thickness z,>x,, a minimum rod length I, (maximum
erosion) is determined from Eqn (7) at the point where rod erosion stops, i.e., v—u,=0.
This condition gives a minimum rod velocity of v =u. Thus, rod velocity v, for intermediate
thick plates ranges between v, > v, > u,, and rod length [, ranges between [y =1, >1,. When
v—uy=0, Eqn(7) gives [, as

= Ioexp[ _ %(US —up)? ] (16)

P

To determine I, and v, when z5 <X, it is necessary to establish a relationship between
[ and z so that [ can be evaluated at the point u=0. The penetration process of interest
here is when target erosion stops (u=0) before rod erosion ceases (v—uy=0). Thus, the
appearance of any rigid-body penetration is ruled out. While Eqn (9) could potentially
provide the relationship between ! and z, the portion based on u is undefined at u=0.
Because of this difficulty, an alternate procedure is pursued that first provides a relationship
between ! and x and then connects x and z. Numerical integration of the v—u, portion
of Eqn (9) together with Eqn(7) as the integrand is used to track time events. For the
critically thick target, z, = x,, Eqns (1) and (3) may be solved for d and equated. This lead<
to the useful result that x/x,=~1/l,, as discussed previously [8]. Therefore, the rod length
[, associated with the point u=0 for the critically thick target is estimated from Eqn(12),
using x,/x,=1,/1, as

la=IOexp|: —%ué} (17)
t

When z, < x,, the intermediate thickness z can be related to the intermediate thickness
x for the critically thick case. This relation is shown in Fig. 4. Accordingly, as far as rod
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Fig. 4. Relationships between velocities and intermediate and critically thick target thicknesses.

erosion is concerned, the point z corresponds to a point x for the critically thick target
problem. From the diagram

X=z+Xy—2q (18)

During penetration into a target of finite thickness, rod length I can be related to x using
I/ly=x/x, and also to z through Eqn (18) so that

Lo 20,2 (19)
Iy Xy Xg

Also from the diagram, x_ is associated with z_ and their relationship is given by Eqn (18),
when x=x_ and z=z_. Thus, rod length I, when z=z_ can be obtained using [ /I, =x./x,
and Eqn (18) or by substitution of I=1_and z=z_into Eqn (19). Since v —u,>0 when u=0,
some further rod erosion can occur beyond /=1I_ which could reduce the rod to a final
length I=1I. For example, when z,=x,, rod lengths I, and /, must correspond respectively
to I, and /. The further rod erosion is taken to be some fraction of the maximum possible,
I,— 1y, depending upon how close z, is to x,. For convenience, the relationship between I,
and [, is assumed to be linear in the region zy <x:

I 1 I, 1

IT=C_ (_a__b>, (20)

Iy 1 lo Iy
where R is an empirical factor related to further interaction between the penetrator and
uneroded target mass (plug). The behaviour of R can be determined by examining maximum
and minimum values for /.. For example, when z,=x,, R=1 satisfies the critically thick

case cited previously. When z,=0, [, =1, requires R =0. Between these limits, it is assumed
that R is equal to the ratio of target thicknesses in the two cases. Thus

R=29, 21)

Xo

Combining Eqns (13), (14), (16), (17), (19), (20), and (21) gives residual rod length when
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29 < Xxo, whereas Eqn (16) provides the value when z, > x,, respectively, as

1o o [ffr-o] e |
< xg! L=1——<1—exp| ——u 1—exp| ——2(v;—u , 22
2o Xp I Ps{ p[ 2, 0 p ZSD( 0) (22)

! p
Zo 2 Xo: L=exp| —=2(v,—up)* | 23
0= Xo xp[ 29 (vs—uo) :I (23)

Iy o

Equation (22) satisfies the requirement I/, = p, when z, = x,. Also, in the limits of high striking
velocity or zero material strengths, the equation approaches the hydrodynamic limit as
I.=1, (1 —z4/x,), where again x,= P, at this limit by Eqn (13). This limit gives the amount
of rod (jet) length remaining after hydrodynamic penetration of a plate target of z, thickness.

The appearance or not of rigid-body penetration in very thick targets (zo,>x,) can be
evaluated in terms of rod lengths I, and [,. The cases are: (1) I,>1,, gives eroding-body
penetration only, and (2) I, <[, allows for eroding-body penetration to be followed by
rigid-body penetration. These conditions depend upon impact conditions and relative
strengths and densities as indicated by Eqns(16) and (17). For the two cases mentioned
previously, these are S/pug>S,/p,(v,—uo)* and S,/pud <S,/py(v,—ug)*, respectively. For
thinner targets (z, < x,), conditions one and two above are placed on [, and /,. Combining
Eqns (14) and (19) gives

lc=lo—lofg+loz—oexp|:—ﬂu§:|. (24)
X 28

0 Xo 1

From Eqn(24), as z, gets small relative to x,, I,—I,>1,, suggesting that the strength,
density, and initial impact velocity have less influence in promoting rigid-body penetration.
Thus a wider range of initial conditions can be tolerated with thinner targets without a
transition to rigid-body penetration during the process.

The assumptions used in developing residual rod length are as follows: (1) penetrator
erosion in a finite-thickness target proceeds independently of target thickness while the
duration does depend upon the thickness, (2) some rod erosion occurs beyond the end of
target erosion in the finite-thickness target, which results from further interaction of the
rod with target mass remaining in its path, and (3) when z, > x,, rod erosion and therefore
residual rod length is given by the critically thick finite-thickness target or semi-infinite
target solution.

RESIDUAL ROD VELOCITY

The previous formulas provide important quantities at the end of penetration to be used
in a momentum or energy balance between final rod and target masses. It will be useful
to formulate these post-penetration processes in the laboratory coordinate frame. During
penetration, it was assumed that the penctrator—target interface moves at a constant rate
of u, in the laboratory reference system. Although the target is initially at rest in the
laboratory frame, impact forces cause the target material to accelerate and the rod to
decelerate. In the laboratory frame, rod velocity v and target material velocity w at
intermediate times are related as shown in Fig. 2, and are simply

v=(v—1uy)+ Uy, (25)
W=1ug— U (26)

It may be noted that rod material velocity relative to the target material v —w=(v —ug)+u.
Thus, the rod velocity relative to the target material differs from rod velocity v relative to
the laboratory frame. Also, the rate of target consumption (erosion) in the laboratory frame
is the difference between the interface velocity and the target material velocity (ug—w)
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Fig. 5. Definition of residual rod and target lengths and masses at the end of penetration into
finite-thickness targets.

which is u and the same in either coordinate system. Velocity profiles for v, u, and w are
presented schematically in Fig. 4. The target velocities u and w can be expressed as a
function of [ as the independent variable through Eqns (8), (19) and (26).

At the end of penetration in the finite-thickness target, target material acquires a final
velocity u, in the laboratory frame by Eqn (26) while the rod decelerates to a velocity v,
determined by /=1, through Eqns (7) and (22) or (23). There is a small momentum difference
when using [, rather than I, to determine v, at the point u=0. While this difference is
associated with further rod erosion, that which appears in erosion products versus that
transmitted to the plug is not known. Since the difference is small compared with the total
for the system, it is neglected in the following analysis. The residual masses of interest are
illustrated in Fig. 5. The residual penetrator mass due to its length [ is designated M..
When z,<x,, target plug mass M_ is determined by z. of Eqn(14), which transitions
smoothly to the mass associated with thickness x, when z5=x, When z,> x,, the total
plug mass to be accelerated is M_+ M, which is the sum of masses associated with the
thicknesses x, and zy— x,. The masses are defined as

M, =ppAl, (27)
20<x0: Mc:ptAcha Md=0a (28)
ZOZXO: Mc:ptAcxa’ Md=p(Ac(ZO_x0)a (29)

where A, is an area representation of unpenetrated target mass having thickness z,, x,, or
Zo— Xo-

The solution to Eqn (3} provides the final plug velocity, momentum, and kinetic energy
for all cases where z,<x,. For the case z,> x,, the details for accelerating the integral
mass M_+ M, have not been included in the analysis. Noting that M_, when z,=x,, is
the maximum amount of mass that can be accelerated to a final velocity w=u,, then the
larger combined mass M + M, would be expected to have a lower final velocity. The
momentum M u, and kinetic energy M uj as determined when z,=x, are taken to be
the totals for the M + M, mass system when z,>x,, as an approximation. With this
estimate, then for an inelastic collision between rod and target masses, a momentum balance
provides a final rod velocity v; of

_ M.+ Mg

= . (30)
M, + M+ M,

Us

Equation (30) represents an upper bound for the rod’s residual velocity when failure
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processes are omitted. Quantities provided by the penetration analysis thus far give v,
directly and also provide an estimate of residual rod velocity v, as well, when a minimum
value for target area A, is taken to be the rod area A4,

The perforation process will be represented by the shear plug formation model developed
by Holt er al. [11], wherein target material failure dissipates energy through a
displacement-type work term. The force applied during material failure is given by a shear
stress S, acting on the plug surface A(y) which makes contact with the stationary target
surrounds. Thus, work done in the failure process E; is

Ef: J SsA(y)dys (31)

0

where y is the plug displacement. Plug contact area A(y) decreases with displacement, in
current notation, according to

A(}V)ZAS(I ——y/ZC)ZTEdsZC(l _y/zc)’ (32)

where A, is the initial contact area and d, is the plug diameter. Plug thickness z, in Eqn (32)
represents those from targets having thicknesses below, at, or above the critically thick
target, as given by Eqns (14) and (15). A maximum value y =z, corresponds to total plug
separation. Integration of Eqn(31) up to y=z_ gives

1
Ef=§7rdsSszf. (33)

Using z, to determine the failure surface is equivalent to viewing penetration/perforation
as a two-step process and does not account for any energy of failure that might occur
before penetration is complete. In this sense, the failure energy, as developed, may represent
only a minimum consideration. Even so, an energy balance would include energy of failure,
taken here to be given by Eqn (33), and kinetic energies of mass defined in Eqns (27) through
(29). Further, when M _u} is taken to represent the kinetic energy of the combined mass
M_+ Mg, the energy balance gives a residual rod velocity v, of

) =

r

(34)

(M,L7Z+Mcu3—2Ef>”2
M, +M +M, '

It is noted that E; depends on zZ, and also M depends directly on z.. Thus, for relatively
thin plates and for somewhat thicker plates at high impact velocity or low values of target
strength, z, is small so that fracture is not likely to be important. Under opposite conditions,
z. may be so large that the kinetic energy of the rod and target mass is less than the energy
required for plug separation. The penetration mechanics solution as developed prior to
Eqn (30) can provide input to material failure models, in general. The appropriate failure
model to be used will depend upon specific target material properties and the type of
failure that occurs. Both Eqns (30) and (34) give expected hydrodynamic results at high
impact velocity and/or low target strength when the rod overmatches the target (zo < x,)
as vy =v, =v, = t,, since z, approaches zero by Eqn (14) and consqeuently M -0, and E;—0
through Eqns (28) and (33), respectively.

Expressions for residual rod velocity were developed on the basis of the following
considerations: (1) rod and target material velocities in the laboratory frame are obtained
through a simple reverse coordinate transformation from the moving interface, (2) an
exchange of momentum occurs between residual rod and target masses subsequent to the
penetration phase, (3) the momentum balance assumes that no momentum is transferred
to the target surrounds during rod-target plug interaction, and (4) the energy balance
assumes a perfectly plastic impact between rod and target plug, but neglects the associated
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energy change in the calculation, while the work done during the process of plug separation
is taken into account.

COMPARISONS WITH HYDROCODE ANALYSIS

The present equations were solved using an IBM PC AT and a single precision BASIC
program. Numerical integration was carried out using Simpson’s rule with 96-rod intervals.
The results are compared with CTH hydrocode calculations provided by Sherrick [12].
For CTH, tracers were placed on the impact axis (centerline of rod and target) at the
projectile-target interface, projectile tail position, and target rear position. Material
properties for both methods were based on the Johnson—Cook constitutive model [13].
Those properties used in the present calculations are given in Table 1. For CTH, a tensile
stress criterion was employed to treat material failure. The penetration problem consisted
of a tungsten alloy (WA) rod having an initial length of 7.87 cm, I/d =10, and a striking
velocity of 1350 m/s. The rod and velocity axes were normal to the target surface. The
target plate was rolled homogeneous armor (RHA) of 5.08-cm thickness.

In Fig. 6, results of the present theory are compared with those of CTH. As discussed
by Anderson et al. [7], the failure criterion utilized in CTH tends to generate excessive
ductility in the target breakout phase, particularly for RHA, which exhibits plugging-type
failure. The current equations gave a penetration time of 76 us with an additional estimated
20 ps for plug separation (based on z./uy) for a total time of 96 us. On the other hand,
CTH gave 110 us for the entire process. Since excess ductility would prolong the process,
the lesser time as given by the current analysis (dashed vertical line in Fig. 6) is consistent
with expectations.

Table 1. Material properties used for the tungsten alloy (WA) penetrator
and RHA target calculations

Density Strength Strength C,
Material (g/em?) (GPa) S, (GPa) (m/s)

Penetrator: WA 17.30 1.51 - -
Targets:
zp=2.54 cm RHA 7.85 1.30 0.751 5170
2, =508 cm RHA 7.85 1.20 0.693 5170
Zo=17.62 cm RHA 7.85 1.10 0.635 5170
1 6 T T L] L} T T T

RESIDUAL ROD ]
VELOCITY

ROD-TARGET

YVELOCITY (km/s)

INTERFACE
0.4 v,=1350 mis
=5.08 cm
0.2 i
v: Egn (25)
w: Egn (26)
Q.0 TARGET REAR v.: Eqn (34)
-0.2 et ' ! '
0 40 80 120 160
TIME (us)

Fig. 6. Comparisons beteen velocity—time results calculated by CTH and the present theory.
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Despite ductility difficulties, target material accelerations given by CTH and the current
theory show similar trends. Further, CTH gives a rod-target interface velocity that is nearly
constant over the time period for penetration. Thus, the constant interface velocity assumed
in this development appears to be reasonable. Rod tail and target rear velocities agree well
enough to support the momentum relations of Eqn (1) for the penetrator and Eqn (3) for
the target. The latter also supports the finite target mass assumption and neglect of shear
stress acting on its idealized cylindrical surface. Agreement of residual rod velocity may
reflect a condition of substantial overmatch of the target by the penetrator in this problem
wherein the energy dissipated in material failure is small and differences in fracture modes
are not seen. In that regard, the energy dissipated in fracture as determined by Eqn (33)
was 0.9 kJ while the kinetic energy of the residual rod was 11 kJ.

COMPARISONS WITH EXPERIMENTAL RESULTS

Although this analysis was developed for long rods (I/d = 10), plug thickness comparisons
are made at low impact velocity and for short rods or bullets since intact plugs or spall
are seldom recovered at high impact velocity. The dividing line z, = x,, for low l/d rods differs
from that of long rods since the total target erosion P, depends on I/d, and therefore x,
differs. The predicted trends are compared with experimental data of Awerbuch and Bodner
[3] for lead and standard rifle bullets striking aluminum and steel targets. Material
properties used in these calculations are taken from their work, as shown in Table 2.
Figure 7 presents plug thickness z, versus initial target thickness z,, for several target-bullet
combinations where impact conditions were held constant within a specific combination.

Table 2. Material properties used for the lead bullet, Al alloy and
steel targets [3]

Density Strength Cy

Material (g/cm?) (GPa) (m/s)
Penetrators:
TT-R(1;=0.937cm) Lead 11.40 0411 -
A-R (/=102 cm) Lead 11.40 0411 -
S-R (/,=1.79 cm) Lead 11.40 0411 -
Targets: Al alloy 2,70 0.320 6174
Steel 7.85 1.300 5170
T T T _— T T T T
14 b 4

Data: Awerbuch and Bodner (3]
+ A-Rvs Al-1 & TT-Rvs Al-1

X A-Rvs A6 a TT-Rvs Al-6 s
12 b O S-Rvs Al-6 // O =
© S-Rvs Steel A, B, C, D np 7
() np

np- not perforated (from Ret. [3])

B © Fig. 6
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Fig. 7. Comparison between experimental data for plug thickness versus plate thickness and
calculations based on the present analysis.
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Most of the data in Fig. 7 are represented by straight lines. For thick plates, the data are
connected by lines having slopes of 1 as expected from Eqn (15). For thinner plates, data
for TT-R and A-R bullets show a linear relationship between z_ and z, in agreement with
Eqn (14). Generally, calculated slopes are in reasonable agreement with the data.

Residual rod lengths calculated by Eqns (22) and (23) are compared with the long rod
data of Zook and Frank [14]. In their work, WA penetrators of length 7.87 cm and I/d =10
were fired at RHA targets of various thickness over a velocity range of 700 to 1600 m/s.
Their data are presented in Fig. 8. Length ratios /,/l, were taken to equal reported residual
rod masses divided by initial rod mass. Material properties used for the calculations are
given in Table 1. Residual rod lengths for semi-infinite targets as given by Zook et al. [15]
also are included in Fig. 8. For a given plate thickness, z, is greater than x, at low values
of impact velocity. Since P, increases with v, and x, increases with P, by Eqn (13), then
X, increases with v, so that a point is reached where z, becomes less than x,. For z,> x,,
Eqn (23) prevails for each of the finite-thickness targets. As x, exceeds z, with increased
v, Eqn (22) predicts a rapid increase in residual rod length with impact velocity to values
which approach hydrodynamic expectations. The general agreement of the calculations
with experimental data is good.

The data of Zook and Frank [14] also include residual rod velocities for the previously
listed set of targets and penetrators. These data are presented in Fig. 9 together with
calculated resuits based on Eqns (30) and (34), Table 1, and A,=1.7 4. The ratio of areas
A/A, was examined over a range from 1.0 to 1.7 where the 1.7 value gave a result in
agreement with the ballistic limit for the 2.54-cm-thick plate. The difference in the ratio
from 1.0 to 1.7 resulted in calculated ballistic limits that differed by only 12 m/s. As expected,
both Eqns (30) and (34) provide similar results at high impact velocity as the hydrodynamic
limit is approached. It is of interest that results based on simple momentum and energy
considerations of the present theory reflect experimental trends so closely, especially as
ballistic limits are approached from the high-velocity region. The critical point z,=x, can
be observed as inflection points in the momentum-based curves. The slope differences are
influenced by several factors, one of which is the rate of plug mass change as x, changes
relative to z, as v, is increased. Also, to some extent, the results may depend on the
approximate solution used when z,> x,,.

For the curves based on energy, Eqn (34), the dissipative term E; dominates the energy
balance at low velocity. As v, increases, projectile kinetic energy increases as v?, while E;
decreases nearly as 1/v? through z, of Eqns(14) and (33). These rapidly varying functions
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Fig. 8. Residual rod length versus striking velocity for finite-thickness and semi-infinite targets
determined experimentally and by present analysis.
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Fig. 9. Rod residual velocity versus striking velocity for finite-thickness targets determined
experimentally and calculated by present analysis.

intersect at the ballistic limit. In addition to velocity dependence, target masses My and
M. decrease smoothly with increased v, as x, approaches z,, permitting more and more
of the projectile’s kinetic energy to be applied to the material failure of less and less
unpenetrated target thickness during the perforation stage. The abrupt decrease of this
mass as seen beyond the inflection point in the momentum curve suggests that the ballistic
limit might be located near the point z, = x,. The exact location, in terms of v, will depend,
however, on target material failure mechanisms as suggested by the energy consideration
developed here.

The sudden increase in v, with v, beyond the ballistic limit shown in Fig.9 can be
explained by a rapid decrease in target thickness and mass, rapid decrease in E; through
z., and an increase in projectile energy through both its velocity as discussed previously
and its rapid mass increase with v, as shown in Fig. 8. At still higher striking velocities,
the equations governing these variables suggest smaller changes until ultimately v, varies
directly with v, as the hydrodynamic limit is approached.

DISCUSSION AND CONCLUSIONS

The present work presents a one-dimensional, nonsteady theory for long-rod penetration
into targets of finite thickness. In this formulation, a solution for the problem where both
rod and target simultaneously undergo acceleration and erosion is obtained from
momentum considerations without resorting to Bernoulli’s equation. The target is defined
to have a “finite” mass that extends axially throughout the plate thickness but is otherwise
isolated from its surroundings. Such a view permits the target to react to the impact,
accelerate, and obtain velocity and displacement during the penetration process. This target
behaviour agrees well with CTH calculations and suggests that target motion during
penetration is an important physical event that should be taken into account. Some further
consequences of note include the following: (1) the penetrator—target interface travels at
nearly constant velocity w.r.t. the laboratory frame of reference, (2) the rate of target
consumption (erosion) gets reduced in time since the target rear surface is accelerated up
to the interface velocity, (3) there will always be a finite amount of target material that is
not eroded, and this determines the thickness of any expected plug or spall, and (4) rod
erosion, therefore residual rod length, depends on the time required for penetration, which
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in turn depends on plate thickness and target motion as well. When compared with
experimental data and CTH calculations, the present theory appears to represent the
detailed penetration process fairly well, both qualitatively and quantitatively.

The penetration analysis gives accurate rod and target conditions at the end of the
penetration process to be used in the plate (plug) perforation process. These conditions,
together with a simple material failure model for plug separation, gave quantitative results
for residual rod velocity versus striking velocity and the ballistic limit. In particular, the
ability to calculate reasonable values for the ballistic limit is significant since this problem
has been difficult, traditionally. With regard to uneroded target thickness, residual rod
length, and residual rod velocity, good results were obtained when ordinary strengths
generally associated with dynamic properties or work-hardened material states were used
in the governing force laws. The theoretical results correspond in mathematical form to
hydrodynamic penetration in limits of high impact velocity or low material strengths. With
the present development, therefore, both long-rod and jet penetration and perforation of
finite-thickness targets are encompassed within a single theoretical framework.
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