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S u m m a r y - - A  common measure of penetration efficiency is given by the depth of penetration P into 
a semi-infinite target normalized by the original length of the projectile L. It has been known for over 
30 years ~:hat P/L depends upon the aspect ratio L/D for projectiles with relatively small aspect ratios, 
e.g. 1 ~< LID <~ 10. This influence of LID on penetration is referred to as the LID effect. Although 
observed, the LID effect for large aspect ratio rods is not as well documented. Further, published 
penetration equations have not included the L/D effect for high aspect ratio rods. We have compiled 
a large quantity of experimental data that  permits the quantification of the LID effect for projectiles 
with aspect ratios of 10 ~< LID <~ 30. Numerical simulations reproduce the observed experimental 
behavior; thus, no new physics is required to explain the phenomenon. The numerical simulations 
allow investigation of the fundamental mechanics leading to a decrease in penetration efficiency with 
increasing aspect ratio. 

NOTATION 

d plate thickness 
D projectile diameter 
l instantaneous projectile length 
I e instantaneous eroded projectile length (l e -= L o - l) 
i projectile erosion rate 
L, L o initial projectile length 
L r residual projectile length 
p instantaneous depth of penetration 
P final depth of penetration 
r 2 regression coefficient of determination 
Rc crater radius 
R m target tensile strength 
R t target resistance 
s extent of plastic zone in projectile 
T[  V, pp, p,, Yt, Yp] hydrodynamic penetration theory 
u penetration velocity 
v projectile tail velocity 
V impact velocity 
V o l.Okm/s 
v V/Vo 
Yp projectile flow stress 
Yt target flow stress 

normalized (by the crater radius) extent of plastic flow in the target 
0 target obliquity 
# proportionality constant 
pp projectile density 
Pt target density 
0 root mean standard error 

INTRODUCTION 

It is well known that penetration efficiency, as measured by the depth of penetration into 
a semi-infinite target normalized by the original length of the projectile (P/L), is greater for 
small LID projectiles than for large LID projectiles; for example, see Ref. [1]. The decrease in 
penetration efficiency with increasing aspect ratio is referred to as the L/D effect. Our interest 
here is the "long-rod" projectile, typically defined as LID >>. 10. It was generally believed that 
the LID effect saturated for L/D > 10, but Hohler and Stilp demonstrated in 1984 [2] that the 
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L/D effect continued to persist at aspect ratios of 32 (see also Ref. [3]). Although the L/D 
effect has been observed, it has not been explicitly discussed in the literature until recently 
[4,5]. Rosenberg and Dekel [5] performed numerical simulations at an impact speed of 
1.4km/s and demonstrated that the L/D effect was predicted, and in agreement, with 
experimental data for L/D 10 and 20. They performed additional computations for L/D 30 
and 40, and demonstrated that penetration efficiency continued to decrease with increasing 
aspect ratio; however, the authors do not provide an explanation for the cause of the effect. 

Modified hydrodynamic theory, such as represented by the Tate model [6-8], does not 
predict an LID effect, nor do other commonly used penetration formulae explicitly account 
for the LID effect, e.g. Ref. [9]. Recently, Lanz and Odermatt [10] provided an empirical 
formula that explicitly includes a term to account for L/D. The expression is a curve fit to 41 
data points for the ballistic limit plate thickness d as a function of impact velocity and target 
obliquity 0: 

d { 1 + L--~ L 1 - t a n h 3 " 7 7 1 -  (LID~910)}}(pp~'/2(cosO)O.745.e_25.9n,,/p#~ (1) 

where R m is the target tensile strength. In Eqn (1), the first term (within the curly brackets) 
becomes essentially 1 for L/D >~ 20, which means that for L/D >1 20 the penetrable plate 
thickness is directly proportional to the penetrator length, and no longer is a function of LID. 
It will be demonstrated below that the LID effect continues to persist for LID >1 20. 

An approach taken by other modelers is to use the modified hydrodynamic theory for all 
but the last diameter of the rod (for example, see Refs [3, 11-13]). The contribution to 
penetration for the last diameter of the rod is calculated from data for projectiles with an 
aspect ratio of 1. This last term accounts for residual crater growth, particularly at high 
velocities. Thus, the total depth of penetration can be written as some function of velocity 
times the length of the projectile (specifically, L - D) plus a term that is proportional to the 
diameter. At very high velocities, the penetration of a LID = 1 projectile is proportional to the 
velocity to the two-thirds power [1, 12-14]. Written symbolically, this is: 

P = TEV, pp, Pt, Yt, Yp] "(L - D) + IIV2/3D, (2) 

where T[V, pp, Pt , Yt, Yp] is the normalized depth of penetration from the modified hy- 
drodynamic penetration model (this normalized depth is a function of the impact velocity 
and the densities and flow stresses of the projectile and target) and # is a proportionality 
constant. Normalizing the above equation by the length of the projectile gives: 

P = T[V'pP'Pt'Yt'YP]( 1"  - L ~ )  + # L/D'V2/3 (3) 

As the LID becomes large, two of the terms become negligible, i.e. P/L becomes independent 
of LID. We can estimate the change in P/L for a change in LID by taking the derivative of P/L 
with respect to LID. 

d(P/L) T[V, pp, Pt, Yt, Yp] va/3 
d(L/D) (L/D) 2 # (L/D)2. (4) 

Equation (4) can be used to make an estimate of the LID effect, holding the velocity and 
materials constant. Tis of the order of 1.0 [15] and pV 2/3 is of the order of 1.3 [1] for tungsten 
projectiles penetrating steel at an impact velocity of 1.5 km/s. Therefore, in going from a 
projectile with a LID of 10 to 20, P/L will decrease by approximately 1.5%. As we shall see, 
this conclusion resulting from Eqns (3) and (4) underestimates the experimental (and 
numerical) L/D effect by a factor of 10. 

The velocity range of interest for long-rod projectiles has traditionally been the so-called 
ordnance velocity range of 1.0-1.8 km/s. The remainder of this paper will focus on the LID 
effect for long-rod projectiles in this velocity range. The LID effect at higher velocities is 
examined in Ref. [16]. (At higher velocities, the LID effect is given by Eqn (3).) 
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EXPERIMENTAL OBSERVATIONS 

Part of the reason for the traditional viewpoint that the L/D effect saturates for large LID 
ratios is the perceived scatter in experimental data. Care must be exercised in making 
comparisons. Penetration theories (for example, see [17]) predict that the depth of penetra- 
tion is a strong function of target strength, and a much weaker function of projectile strength, 
and this is substantiated by experimental data [3, 18]. Specifically, we will focus on tungsten 
alloy projectiles and rolled homogeneous armor (RHA) targets (or RHA-like targets, e.g. 
4340 steel targets hardened to approximately BHN 270). Our analysis of the experimental 
data has shown that the effect on penetration due to differences in density (tungsten content) 
are within the experimental scatter, but differences in target hardness and/or projectile flow 
characteristics (projectile alloy) can mask the L/D effect. Nominal properties of the various 
tungsten alloys are provided in Table 1 [19]. Because of potential differences between target 
hardnesses, and the exact processing of the tungsten alloy, we have compared data from the 
same laboratory, where possible, to minimize potential variation. However, we have 
combined data from different laboratories when the data are fairly sparse. Figures 1-4 
compare no:malized penetration as a function of impact velocity for L/D's of 10 and 15 
[.20-22]; 10 and 20 [.20, 23, 24]; and two plots of 10, 15, and 30 [.23, 24], respectively, for seven 
different tungsten alloys. The dashed lines in each of the figures are linear least squares fits of 
P/L as a function of impact velocity, for V-%< 1.8 km/s. For comparison purposes, the 
differences in normalized penetration at 1.5 km/s are given in Table 2. Clearly, the L/D effect 
continues to be prominent as the aspect ratio increases from 10 to 30, as also demonstrated in 
Refs [.4, 5]. 

THE L/D EFFECT 

It is instructive to examine P/L as a function of L/D. As already mentioned, linear least 
squares fits of P/L vs the impact velocity V were performed on the various experimental data 
groups. These provide a convenient method to estimate normalized penetration for three 
impact velocities: 1.2, 1.5, and 1.8 km/s. The results, along with additional data from Tate 
et al. [25], and the computational results to be discussed in the next section, are plotted in 
Fig. 5 as a function of L/D. 

The first thing to note is that the numerical simulations predict the L/D effect for the larger 
L/D rods, and they are in good agreement with the experimental data. This is an important 
observation since this implies that no "new" physics must be invoked to explain the L/D 
effect. The second feature to note is that the curvature of the P/L vs L/D curve increases for 
decreasing L/D, particularly for low L/D. This is consistent with penetration efficiency being 
a strong function of aspect ratio for low L/D ratios. A third feature is that the curves appear to 
translate upward in P/L with increasing impact velocity without much change in shape. 
Although P/L is a strong function of impact velocity, this last observation implies that the 
L/D effect, at least in the ordnance velocity range, is either independent, or only a weak 
function, of impact velocity. 

Table 1. Summary of nominal projectile characteristics [19] 

W content Density Strength 
Nomenclature Alloy materials (% by weight) (g/cm 3) (MPa) 

X30 W-Ni-Fe  90 
X27 W-Ni Fe 91 17.34 895 
X27C W-Ni-Fe-Co 91 17.38 970 
X27X W Ni-Co 91 17.45 1030 
X21 W-Ni Fe 93 17.74 920 
X21C W-Ni-Fe-Co  93 17.77 975 
X9C W-Ni-Fe-Co  97 18.61 985 
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Fig. 1. L/D effect: L/D 10 and 15 projectiles (91% 93% W alloy, Ni-Fe~Oo Matrix). 
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Fig. 2. LID effect: L/D 10 and 20 projectiles (90-93% W alloy, Ni-Fe Matrix). 
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Fig. 3. L/D effect: L/D 10, 15 and 30 projectiles (91% W alloy, Ni-Co Matrix). 
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Fig. 4. L/D effect: L/D 10, 15 and 30 projectiles (97% W alloy, Ni -Fe-Co Matrix). 

Table 2. Changes in penetration efficiency 
(%) at 1.5 km/s 

Change in L/D % Fig. No. 

LID 10--.15 - 8  1 
LID 10--.20 - 14 2 
L/D 10~  15 - 9  3 
L/D 15--.30 - 2 2  3 
L/D 10--.30 - 3 1  3 
L/D 10 --* 15 - 4  4 
L/D 15--.30 - 2 2  4 
L/D 10--.30 - 2 6  4 

1.6 

1.4 

1.2 

1.0 

0.8 

0.6 i 0.4 

0.2 

0.0 
0 

"~':"'~"~' I I I I I ' '  ' ; I  ' C ' ° m p u t a t i ° ' n s ~ "  ' ~ "  . . . .  ~.r-~ . . . .  . . . .  . . . .  I •O• Ref,Ref.Ref. [20-221120][23] I I '! 

i ' i \  ..... o ,.,[2,] 
i 0 Ref. [251 

-~ i O ' - ~ . m  - - ~ ' ~ ' ~ ! 1  1.8 km/s 

: ~ ~ ~ l l  1.5 km/s 

<> ~ ~ e - ~ . ~  . . . .  • 1.2 kmls 

5 10 15 20 25 30 35 40 

UP 

Fig. 5. Normalized penetration vs aspect ratio. 

The dashed lines through the data (and computational points at 1.5km/s) in Fig. 5 
represent least-squares regression fits of the form P/L = a + b In(L/D) that capture the overall 
decay of P/L with L/D. The regression parameters, root mean square error, and the 
coefficient of determination for the three impact velocities are given in Table 3. We have 
already observed that P/L vs L/D is relatively independent of impact velocity, and this is 
reflected in l:he regression parameter b being approximately equal for the three curves; and in 
fact, the ditferences in the three values for b are not statistically significant. Since P/L is 
essentially linear in the velocity range of 0.8-1.8 kin/s, we can perform a regression fit to 
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Table 3. Regression coefficients for P/L = a + bin(L/D) 

Velocity a b ff r 2 

(km/s) ( - ) ( - ) ( - ) ( - ) 

1.2 1.02 - 0.184 0.041 0.892 
1.5 1.34 - 0.190 0.031 0.967 
1.8 1.72 - 0.214 0.029 0.959 

P/L  = a + b V +  cln(L/D)  to obtain the constants a, b and c: 

P -  0.209+ 1.044~'-0.1941n{ L ' ]  (5) 
L \19/ 

where ~'= V/V  o, and V o is 1.0 km/s. The dotted lines in Fig. 5 were calculated from Eqn (5); 
the root mean square error between the data and Eqn (5) is 0.033, with an r 2 =  0.986. 
Equation (5) can be used to estimate the change in P/L  as a function of L/D for tungsten- alloy 
projectiles into RHA steel: 

d(P/L) 0.194 
d(L/D) - L/D " (6) 

Since Eqn (6) is based on the experimental data, it gives the correct dependence of P/L  on 
L/D, e.g. at an impact velocity of 1.5 km/s, P/L  will decrease by approximately 13% as the 
projectile LID varies from 10 to 20.t 

The change in P/L  due to changing LID from Tate-like theory, Eqn (4), is small because the 
LID term in the denominator is squared. Thus, for a LID 10 rod, d(P/L)/d(L/D) is of the order 
of 1/100. However, for the experimental curve fit Eqn (5), the LID term in the denominator is 
to the first power. Thus, d(P/L)/d(L/D) is of the order of 1/10 for an LID 10 rod. This 
observation leads to a significant conclusion. The first-order dependence implies that the LID 
effect is not solely an "end" effect; i.e. it is not simply the result of the highly transient initial 
and terminal phases of impact. These transient phases are functions of the diameter of the 
projectile, and it was demonstrated in Eqns (2-4) that d(P/L)/d(L/D) is proportional to 
1~(LID) 2 for terms that depend linearly on D. Therefore, most of the LID effect is due to how 
penetration occurs in the quasi-steady portion of penetration. After a presentation of the 
numerical results, it will be shown that the LID effect is the result of the gradual decay in 
interface velocity during the quasi-steady-state phase of penetration. 

NUMERICAL SIMULATIONS 

The nonlinear, large deformation Eulerian wavecode CTH [26] was used to investigate 
penetration by projectiles of varying aspect ratios. The 2-D cylindrically symmetric option of 
CTH was used to simulate the projectile-target interaction. CTH uses a van Leer algorithm 
for second-order accurate advection that has been generalized to account for a non-uniform 
and finite grid, and multiple materials; CTH has an advanced material interface algorithm for 
the treatment of mixed cells. CTH allows the flow stress to be functions of strain, strain rate, 
and temperature [27, 28]. The Johnson-Cook model [29] with parameters for 4340 steel and 
a tungsten alloy was used for the computations. Table 4 lists the parameters used for this 
study. Seven zones were used to resolve the projectile radius; the zoning was square in the 
interaction region. 

Two different sets of aspect ratios were computed: L/D = 3, 6 and 12, and L/D = 10, 20, and 
30 projectiles. The two sets were run twice, once with constant diameter (D = 0.30cm) 

~'Equation (1) does not reflect the change in penetration with L/D as seen in the experimental data: the d/L curve is 
too steep for L/D < 10, and it is too fiat for L/D > 15. 
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Table 4. Constitutive parameters 
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Yo B n C m Zmelt G v Frac. stress 
(GPa) (GPa) (-)  ( - )  ( - )  (°K) (Gea) ( - )  (GPa) 

Tungsten 1.51 0.177 0.12 0.016 1.00 1752 119 0.30 2.0 
4340 Steel 1.189 0.765 0.26 0.014 1.03 1793 77.6 0.29 2.0 

0 , = ( ° - ° o ~  aeq=(yo+Be~)El+Cln(~p/~o)](l_O,, ) ~o=1.0 s 1 \0m--00/ 00=298OK 

Table 5. P/L from numerical simulations 
(Vimpact = 1.5 km/s) 

e/g P/L 
L/D constant D constant L 

3 1.139 1.157 
6 1.010 1.009 

12 0.893 0.887 
10 0.923 0.923 
20 0.790 0.781 
30 0.690 0.680 
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F'ig. 6. Penetration (nose) and tail positions vs time for constant diameter projectiles. 

projectiles, and the other  with constant  length (L = 3.0cm) projectiles. The length or  
diameter of  the projectiles was varied accordingly to give the proper  aspect ratio. An impact  
velocity of  1..5 km/s  was used for all the computat ions.  The normalized penetrat ions as 
a function of  L/D are summarized in Table 5. 

Constant diameter projectiles 

We focus first on constant  diameter projectiles, so the length is the geometric dimension 
that  changes to give different projectile aspect ratios. The positions of  the nose and tail are 
plotted vs time in Fig. 6 for constant  diameter  projectiles. The nose (penetration) and tail 
velocities vs time for these projectiles are shown in Fig. 7. The nose and tail velocities are 
plotted as a function of  the penetrat ion depth in Fig. 8 for the various L/D's. 

There are a number  of  impor tan t  observations.  The early time behavior  of  the projectiles is 
identical. As will be seen in the next section, the early time behavior  is different if the 
diameters are different; therefore, the early time behavior  scales with the diameter D. 
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The step decrease in the tail velocity is caused by the arrival of the elastic wave--this 
disturbance was initiated at impact--travelling the length of the projectile. The elastic wave 
reflects off the free surface of the projectile, and travels back to the projectile-target interface. 
The penetration curves begin to deviate from one another when the elastic wave returns to 
the interface. This is the first length effect on penetration velocity. This effect is easiest to 
observe for projectiles that differ by factors of two in length. 

The most important observation regards the penetration velocity in the so-called quasi- 
steady phase of penetration where the penetration velocity decreases with time. At early 
times, the penetration velocity curves overlay each other, suggesting that the penetration 
velocity scales with D and not with L. Beginning with the return of the elastic wave from the 
rear of the projectile, there is an L dependence in the penetration velocity. The tail velocities 
do not overlay; thus, the deceleration of the tail of the projectile does not scale with D. 

Lastly, the terminal phase of deceleration, defined to be when the tail velocity begins the 
large deceleration near the end of penetration, is approximately the same for constant 
diameter projectiles. The terminal phases are almost parallel to each other in Figs 7 and 8; the 
fact that the terminal phases are slightly different is attributed to differences in the 
penetration velocity when the projectile enters the terminal phase. Therefore, the terminal 
phase scales with D. 
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Constant lenyth projectiles 
The positions of the nose and tail vs time are plotted for constant initial length projectiles 

with aspect ratios of 10, 20, and 30 in Fig. 9; the position-time curves for LID 3, 6, and 12 look 
similar. The penetration and tail velocities vs time are plotted in Figs 10 and 11 for the two 
L/D groupings. Again, the impact velocity was 1.5 km/s for all the computations. 

For constant length projectiles, the projectile emerges from the initial transient stage of 
penetration with different penetration velocities, Figs 10 and 11. This is a diameter effect; the 
smaller diameter projectiles take less time to transition to the quasi-steady-state penetration 
phase. Thus, at the same time in the penetration process, the penetration velocity is less than 
that of a larger diameter projectile, and similarly, the erosion rate is greater than that of 
a larger diameter projectile. This conclusion, drawn from the penetration and tail velocity 
histories, is confirmed in the position vs time plots of Fig. 9, which show that the larger LID 
projectiles have less penetration than the shorter LID projectiles for any specified time after 
impact. 

The penetration velocity during quasi-steady penetration is less for smaller diameters, and 
suggests that the penetration velocity depends on D. Not only are they less, but Fig. 11 
suggests that the slope decreases (becomes more negative) with decreasing diameter. This 
observation will be made quantitative in the Scaling and Penetration Efficiency section 
below. Since projectile tail velocities overlay for much of the penetration for the different 
diameters, it appears that the tail velocities scale with L. These two conclusions agree with 
those drawn from the constant diameter computer simulations. 

From Figs 10 and 11, it is observed that the final deceleration phase of the projectiles is 
steeper for decreasing diameter (increasing aspect ratio). The deceleration phases were 
approximately parallel for constant diameter projectiles, thus, the deceleration phase scales 
with D. The steeper this deceleration, the more rapid the final phase of penetration and, 
ostensibly, the less penetration during this transient phase. 

Residual len#th 
The lengths of the residual projectile from the computations are plotted as a function of 

L/D in Fig. 12. Eulerian wavecodes do not model well the transition from eroding to 
rigid-body penetration [30], and L,/D is different for the constant length and constant 
diameter computer runs. This scatter represents the uncertainty in mixed cell treatment. 
However, the overall trend seen in Fig. 12 should be correct. Included in the figure is 
a quadratic curve fit to these values, given by 

L~/D = 0.433 + O.0533(L/D) - 7.243 × IO-4(L/D) 2. (7) 

Previous work [31] has shown that the length of the residual rod decreases with increasing 
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impact velocity. It is seen here that the residual rod length, in terms of the projectile diameter, 
increases with L/D. 

Scaling and penetration efficiency 
Comparing the P/L results in Table 5 at the same L/D (constant diameter and constant 

length computer runs), it is observed that the results are identical to within 1.5%. It was 
anticipated Lhat P/L would depend only on the aspect ratio (for specified materials and 
impact velocity), and be independent of actual projectile dimensions (except for strain-rate 
effects which have been shown to be small over a scale factor of 10 [32]). But this is an 
important Observation since it implies that the results of constant length projectiles can be 
scaled to constant diameter projectiles by multiplying the time and penetration depth by the 
geometric increase in length. When this is done, the results essentially overlay those of 
constant diameter. The significance of this observation is that conclusions can be made 
concerning the penetration response as a function of L/D and not L and D separately. 

Examining the penetration histories of either Fig. 7, or Figs 10 and 11, we observe that the 
average penetration velocity in the quasi-steady penetration phase for the higher aspect ratio 
projectiles is less than the average penetration velocity of the shorter aspect ratio projectiles. 
Figures 13-15 quantitatively demonstrate how the efficiency of penetration decreases with 
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increasing length due to the deceleration of the projectile nose. One measure of the efficiency 
of eroding penetration, defined as the penetration velocity divided by the erosion rate, 

penetration rate dp u 
efficiency = erosion rate dl v - u' 

where the lower case p denotes the instantaneous depth of penetration, is plotted in Fig. 13 as 
a function of penetration depth normalized by the projectile diameter. (This efficiency, 

- dp/dl, is an analog to the final depth of penetration P/L for eroding penetration where the 
projectile nearly completely erodes.) Although all the computational results were examined, 
only the results for LID 10, 20, and 30 are presented for purposes of clarity. The vertical lines 
at approximately 9, 15.5, and 20.5 diameters of penetration represent where the projectile has 
gone rigid (and thus v = u) for the L/D 10, 20 and 30 projectiles, respectively. The curves from 
the three cases are seen to overlay each other. This is an important observation: the 
penetration efficiency is a function of the diameters of penetration, and this efficiency 
decreases as the projectile penetrates deeper into the target. 

From Fig. 13, the ratio of penetration velocity to erosion rate is observed to decrease 
approximately linearly with respect to projectile penetration: 

u b p_ a - (8) v - u  D' 

where the constants a and b are a function of the impact velocity. Noting that p = u and 
(v - u) = - / ' ,  Eqn (8) can be integrated to give: 

p = a (1 - exp { - b(L - l)/D}), (9) 
D b 

where I = L - L o at time t = 0. The quantity L - I is the length of rod that has eroded, referred 
to as I e. This gives penetration as a function of eroded projectile length. Assuming that the 
final length of the projectile is approximately zero, Eqn (9) gives the final depth of penetration 
a s  

P l - e x p { - b ( L / D ) } { b ( L )  b2(L)  2 } 
- = a  = a  1 -  + . . . .  . (10) L b(L/D) 2 --( \-D] 

Thus, the final depth of penetration shows an L/D dependence when the efficiency of 
penetration is dependent on the number of diameters of penetration. We note that Eqn (10) 
does not have the same form as the empirical curve fit to the data, Eqn (5). Using values for 
a and b (given below), Eqn (10) provides a reasonable estimate of the experimental data for 
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LID > 7, but it certainly is not as accurate as Eqn (5), primarily because of the assumption 
that the residual rod length is zero. 

An alternative way of examining the penetration efficiency is to examine the variables 
suggested by Eqn (9), namely p/D vs le/D, as in Fig. 14. lJD represents the amount of 
projectile eroded, in projectile diameters, to achieve p/D penetration. All six LID computa- 
tions are shown. The results for the different LID projectiles are essentially identical where the 
curves overlap, although there is a small amount of deviation during the late phase of 
penetration for the short LID's. The p/D curve is concave down, so that for increasing aspect 
ratio, P/L will decrease. Effectively, the results of Fig. 14 show that the penetration per length 
of eroded rod decreases as the projectile penetrates the target. Also shown on this plot is 
Eqn (9), where the coefficients a = 1.127 and b = 0.03455 were obtained by the linear fit of 
Eqn (8) to FJLg. 13. The agreement is quite good, which demonstrates that examining the effi- 
ciency u/(v -- u) provides much information about total penetration of an eroding projectile. 

A final figure in this series, Fig. 15, is similar to the previous one, but plotting p/l~ (instead of 
p/D) vs the length eroded lJD for all six LID's. Also on this plot is Eqn (10), with the 
coefficients obtained above. This expression shows that the linear decrease in u/(v - u) agrees 
with the quasi-steady penetration of the projectiles. For LID < 10, the final state deviates 
from the a,;sumption of a linear decrease of the penetration velocity with time (the 
quasi-steady-state penetration regime). This deviation is due to the final transient penetra- 
tion phase where the computational curves become vertical when erosion ceases. However, 
by the time L/D = 10, the initial and final transients are negligible relative to total penetra- 
tion, and the, LID effect is completely due to the quasi-steady portion of penetration. Even for 
IJD < 10 penetration, it is clear that there is a quasi-steady penetration phase during which 
all the projectiles have the same penetration vs eroded length. Therefore, the deviation of 
Eqn (10) fro~rn the computational results for small LID demonstates that the final transients 
play a role in final penetration depth for LID < 10, while the agreement for LID > 10 shows 
that the decay in the penetration velocity during the quasi-steady phase is primarily 
responsible for the LID effect for long rods in the ordnance velocity range. 

Lastly, another analytical expression is plotted in Fig. 15. This expression is derived from 
Eqn (5). The penetration depth obtained from Eqn (5) is divided by the initial length (L) minus 
the residual length (Lr) obtained from Eqn (7), and this is plotted vs (L-  Lr)/D. The 
agreement between this modified Eqn (5) and the computational results is quite remarkable. 
This verifies Eqn (5) and Eqn (7), and further confirms the role of transients for LID < 10 
penetration. 

In summary, the penetration velocity during the quasi-steady phase of penetration 
decreases in a manner that is dependent on the diameter of the projectile; therefore, the 
time-weighted average penetration velocity decreases for increasing aspect ratio. Since 
penetration is a strong function of velocity in the ordnance velocity range for tungsten alloy 
projectiles into armor steel, the higher aspect ratio projectile does not penetrate as deeply 
when normalized by the original length of the projectile. The penetration in projectile 
diameters w~ the projectile's eroded length in projectile diameters can be represented by 
a single curve, regardless of initial aspect ratio of the projectiles. This curve is concave down, 
showing a diminishing return in penetration depth per eroded projectile length. 

A SIMPLE MODEL 

To demonstrate that the origin of the effect is due to the decrease in the penetration 
velocity depending on the projectile diameter, a simple model of eroding penetration is 
discussed. First, there are two equations that are common to the various long-rod penetra- 
tion models: 

t3 = YP (lla) 
ppl 

= - (v - u). (1 lb) 
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The first equation, Eqn (1 la), approximates the deceleration of the back end of the projectile, 
where I is the instantaneous length of the projectile. The second equation, Eqn (1 lb), simply 
states that the erosion rate of the projectile is the difference in the tail velocity v and the 
penetration velocity u. To complete the model, a third equation is required to determine the 
interface velocity u. The initial conditions are the impact velocity and the initial projectile 
length L. These equations hold until either v = u (the projectile no longer erodes) or u = 0 
(penetration has ceased). 

If the equation for u does not depend on D, then there will be no LID effect because 
D nowhere enters into the equations. For example, the Tate model [6, 7] does not predict an 
LID effect; the u from the Tate model is obtained from: 

}pp(V - -  .)2 + yp = }p t .2  + Rt ' (12) 

where R t is the target resistance to penetration [6-8]. This can be written in rate form as 

pp(V - u) (v - u) Yp (13) 
fi = p t  u + p p ( V  - -  U) (~ ---- - -  p t  u + p p ( V  - -  U) l 

There is no explicit D dependence, and so the model has no LID dependence. Deceleration of 
the projectile comes from Eqns (1 la) and (13), with the result that the average penetration 
velocity for different aspect ratios are the same in the Tate model. 

As a second example, consider Eqn (8), the linear fit of the penetration efficiency in terms 
of the penetration depth (Fig. 13). Using i6 = u, this equation provides the following equation 
for fi: 

(14) 

Since the deceleration of the penetration velocity u depends explicitly on D, there will be an 
LID effect. To demonstrate the dependence of the LID effect on the term containing b, Fig. 16 
plots four cases: b = 0, b = 0.02, b = 0.03455 (the fit from Fig. 13), and b = 0.05. In all cases, 
a = 1.127 (the fit from Fig. 13) provided an initial u = 0.79 km/s from Eqn (8), for the initial 
v = 1.5 km/s. The densities of the projectile and the target were 17.3 g/cm a and 7.85 g / c m  3, 

respectively. It is seen that when b = 0 there is no L/D effect since D drops out of the 
ti equation. However, for increasing b, the L/D effect becomes more prominent. Also plotted 
in Fig. 16 is the P/L curve of Eqn (5). It is seen that the penetration depth from the simple 
model does not quite match the curve fit to experimental data, Eqn (5). The problem, for large 
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L/D, lies in tJae stopping criteria for the model described by Eqns (11) and (14). In this simple 
model, the rod nearly completely erodes and the v = u criterion terminates penetration. The 
residual length of the projectile is much smaller than that seen in the computations. If instead 
the stopping criterion for the model is defined so that penetration ceases when l equals the 
residual rod length of Eqn (7), then the dotted curve in the graph results. Though it does not 
do well for low L/D where the final transient phase is important, the experimental curve and 
the model curve overlay for higher L/D, demonstrating that Eqn (8) is a good representation 
of the behavior of the penetration velocity for large aspect ratio rods. 

As a particular corollary to the observation that ti must explicitly depend on D, we can 
conclude that if ti = 0 then there will be no L/D effect. Thus, if penetration were truly steady 
state, there would be no L/D effect, since u would remain constant, and ti, being zero, would 
not depend on D. The L/D effect is due to the decrease (in general, the change) in penetration 
velocity during penetration. The decrease (change) in penetration velocity depends on 
a length scale that is proportional to the diameter of the projectile. 

Since we have demonstrated that the LID effect requires a nonzero ti, it is desirable to know 
why the penetration velocity decays on physical grounds. In a recent penetration model by 
Walker and Anderson [33], the axial momentum equation is integrated along the centerline 
of penetration. The transient terms have been retained,t and the resulting expression 
contains a deceleration term, ti, for the penetration velocity: 

ppf)(l -- s) + f~ ppS + ptR¢ ~ + pp - -7 -  -~ + pt~ (~ + 1) 2 

= ½Pp0 ) _ U)2 _ {½RtU 2 + 7 In(co) Y, }. (15) 

In Eqn (15), s is the extent of the plastic zone in the projectile, and 0¢ represents the extent of 
plastic flow in the target in terms of the crater radius R c. The deceleration of the tail of the 
projectile is essentially given by Eqn (11a), but with l replaced by ( I -  s); the time rate of 
change of the length of the projectile is given by Eqn (11b). Both Rc and s scale with the 
projectile radius, and both multiply ti. Therefore, the transient terms, which originate from 
the inertia of the velocity field in the target and change in the extents of the plastic zone in the 
target and in the projectile, introduce a D dependence in t~.:~ However, as will be discussed 
below, the LID effect is mostly due to a D dependence in ~. 

It turns o u t  that Eqn (15), with 0¢ calculated by a cavity expansion method [33], does not 
produce as great an LID effect as is seen in experiments. Although the p/D vs le/D curves are 
concave down as in the numerical simulations, the curvatures are not as great, and the curves 
do not overlay for the various LID's as they do for the numerical simulations. These effects 
combine to give a d(P/L)/d(L/D) of approximately one-fourth that seen in the simulations 
and the experiments (closer to an (L/D) 2 dependency than an LID dependency). The model 
can be used to explore what is necessary to give the appropriate LID dependence. It is found 
that the extent of the plastic zone within the target must increase as a function of penetration 
depth in terms of projectile diameters during quasi-steady penetration. In contrast, in the 
current model formulation, the 0¢ calculated with a cavity expansion expression is relatively 
constant wkh time during the quasi-steady-state portion of penetration (~ does increase 
a small amount since it depends on the penetration velocity). An 0¢ that increases during 
penetration was anticipated by comparing the model against penetration velocity [35]. Also, 
the computational results of Ref. [17] indicated that the overall target resistance increases 
with time during quasi-steady penetration, suggesting that u should also increase, thereby 
supporting this conclusion. By taking R t = ~ln(~) Yt in the Tate model, with 0¢ dependent on 
the depth of penetration in projectile diameters as above, a large LID effect ensues in the Tate 
model. Thus, the large LID effect is mostly due to the D dependent increase in 0¢ and does not 

tTa te  modified his original model and acceleration terms were not  neglected [34]. The deceleration term depends 
on the crater radius, and hence D. However, the implications of including such terms were not  explored. 

~We note that if Re ~ 0 and s ~ 0 in Eqn (15), then no LID effect would be expected. When this limit is taken, 
Eqn (15) reduces to Eqn (12), with R t = 231n(~t)Y ,. This is simply the original Tate model which has no L/D effect. 
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arise solely through the transient terms in Eqn (15). Clearly, as stated in Ref. [33], the 
determination of the extent of the plastic zone in the target is an area requiring further 
research. 

Computer simulations were performed where the projectile strength was set to zero (at an 
impact velocity of 1.5 km/s). Normalized penetrations for these fluid projectiles were 0.75, 
0.75, and 0.72 for the L/D 10, 20, and 30 projectiles, respectively. However, the mechanics of 
penetration changes dramatically during the terminal stage of penetration for the L/D 20 and 
30 projectiles. There appears to be some sort of focusing effect of the projectile material 
towards the centerline, through an interaction of projectile material with the crater walls, 
that results in a very narrow crater and enhanced penetration. If, instead, an estimate of 
penetration is made by extrapolating the normal penetration behavior, then normalized 
penetrations are estimated to be 0.75, 0.67, and 0.56, respectively, for the LID 10, 20, and 30 
projectiles. Although these points lay below the 1.5-km/s curve in Fig. 5, the overall trend is 
similar to the curve for which the projectile has strength. Thus, it is concluded that the LID 
effect cannot be attributed to strength effects of the projectile. 

However, penetration performance can be modified by failure mechanisms at the nose of 
the projectile. In the work here, the failure model consisted of the insertion of void into 
computational cells when the material stress exceeded a tensile criterion; thus, all computa- 
tions assumed the same operative dynamics. Magness has demonstrated that the improved 
performance of DU-0.75% Ti projectiles as compared to tungsten alloy projectiles is due to 
the propensity of the DU-0.75% Ti alloy to form adiabatic shear bands during penetration 
[-24]. Calculations by Parton and Yaziv [4] and Partom [36] show that penetration 
efficiency can be modified by changing the plastic flow response of the projectile material. 
This influence has been determined through changes of a strain-to-failure criterion for 
penetrator material [4] and through manipulation of the constitutive response of the 
projectile material [36]. These results demonstrate that the dynamic flow behavior of the 
projectile plays a role in the overall penetration process, but the results here suggest that the 
origins of the L/D effect lay in the behavior of the target. 

SUMMARY 

The degraded performance of penetration, as measured by a decrease in normalized 
penetration P/L, as the aspect ratio LID of the projectile increases has been examined. The 
traditional hydrodynamic-plus-strength theories of penetration do not predict an LID effect, 
and greatly underpredict the effect when modified to account for residual crater growth at the 
end of penetration. Experimental data from a variety of sources (tungsten alloy projectiles 
into RHA) were used to quantify the L/D effect. In the ordnance velocity range of 
0.8 ~< V ~< 1.8 km/s, it was shown (empirically) to a very good approximation that penetration 
performance degrades as ln(L/D) for 1 ~< LID <~ 30. 

Numerical simulations were performed, and the calculated P/Es were in good agreement 
with experimental data as a function of L/D. The computational results scale between 
constant diameter projectiles and constant length projectiles; therefore, conclusions could be 
made concerning variations in L/D, independent of specific L's and D's. It was shown that the 
average penetration velocity decreases for an increase in projectile aspect ratio, and that this 
decrease in penetration velocity is the cause of the LID effect for large aspect ratio projectiles. 
(It was also demonstrated that for small aspect ratio rods, transients at the end of penetration 
contribute significantly to the LID effect.) The deceleration of the front end of the projectile 
depends on a length scale that is proportional to projectile diameter, whereas total 
penetration time is proportional to the projectile length; the combination of these two length 
scales leads to the L/D effect. Using analytical modeling, the origins of the LID effect were 
explored. It was suggested that growth of the plastic zone within the target contributes to the 
LID effect. If the penetration velocity were constant through the whole penetration process, 
there would be no L/D effect. For example, it is demonstrated in Ref. [16] that at higher 
impact velocities (above 2.0 km/s), where the penetration velocity is constant in the "steady- 
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state" region, the L/D effect results from the terminal (transient) phase of penetration and not 
from the quasi-steady phase. This is in contrast to lower velocity penetration. 
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