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Summary--In this paper, a new pressure law is proposed to replace the modified Bernoulli equation 
of Tate in 1967 and 1969. It is achieved by decomposing the equation of motion, which was proposed 
by Jone:~ et al. in 1987, into two parts and incorporating the kinematic equation by Wilson et al. in 
1989. The new pressure law takes the effect of mushroom strain into account. From two different 
considerations, the pressure law is applied to the one-dimensional penetration modeling. First, by 
assuming that the rod/target interface pressure is approximately constant during the quasi-steady 
state, the governing equations can be analytically integrated to give a closed form solution for the 
penetration depth. The prediction is reasonably good in the low velocity regime. Secondly, a velocity- 
dependent interface pressure is added. A so-called shape factor, which was first introduced without 
physical interpretation by Alekseevskii in 1966, is substantiated. With this factor, the governing 
equations can be numerically integrated to give very accurate predictions for the impact velocity 
range from 1 km/s to 4 km/s. 

INTRODUCTION 

In the model developed by Alekseevskii [ 1] and Tate [21 the behavior of the rod is assumed 
to have two consecutive deformation zones. The first zone is a wafer thin plastic region, which 
is instantaneously eroded at the tip (or rod/target interface) of the rod. The second zone is the 
current uneroded (rigid) portion of the rod. In the first zone, the rod material is assumed to 
behave hydrodynamically, and in the second zone the rod is rigid over its uneroded length. 
The transition between these two zones is assumed to occur somewhere around the 
maximum sl:ress (ultimate dynamic yield strength) that the rod can sustain as a rigid body. 
Beyond this dynamic yield strength, the material then behaves more like an incompressible 
and inviscid fluid in steady state. In order to simulate this transition phenomenon, for the first 
zone, they introduced the modified Bernoulli equation, which includes both dynamic 
strengths of the rod and target. This was used to estimate the rod/target interface pressure 
and to relate the current penetration velocity to the current velocity of the uneroded rod. As 
to the second zone, they applied Newton's second law to estimate a decelerated motion for 
the undefor~ned section. However, a factor that is controversial, but vital to the modified 
Bernoulli equation, is how to determine the strengths for the rod and target materials. These 
strength values are frequently obtained by matching the theoretical prediction of penetration 
depth with experimental data. A variety of attempts to estimate the target strength analyti- 
cally thus became the focus of many efforts in verifying or revising the theory of Tate and 
AlekseevskiL Tate I-3, 4] developed a flow field model, from which the modified Bernoulli 
equation was derived and the strength factors were correlated to material constants. 
Assuming elastic-plastic behavior of the rod and target material, the size of plastic region in 
the rod was estimated. It was suggested by Tate that a treatment of the unsteady motion 
could be accommodated by the addition of a Archimedean buoyance terms, which are 
present in any accelerated frame of reference. From the viewpoint of force balance, 
Rosenberg et al. [5] introduced the effective cross-sectional areas of the rigid rod and its 
mushroom front end to the modified Bernoulli equation. Based on this modification, and 
estimating the target resistance from the expansion of a cylindrical cavity in an infinite 
medium, they claimed good agreement between the model and experimental data. On the 
other hand: Wright [6, 7] and Wright and Frank 1-8] questioned the validity of the 
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assumption of the steady state and the estimate of the interface pressure by the modified 
Bernoulli equation. Lately, Anderson and Walker [9] have made a further examination of 
Tate's model with the aid of numerical simulation. They indicated that because a finite region 
of the projectile deceleration is not accounted for, Tate's model predicts the rear of the 
projectile decelerates too late and too rapidly at the end of penetration. On the basis of 
discrepancies in the prediction between Tate's model and numerical simulation, Walker and 
Anderson [10] proposed a nonsteady state penetration model. Anderson et al. [11, 12] also 
reported that target resistance varies considerably during penetration and that the resistance 
value used in Tate's model should be considered as an average value to give the correct 
penetration depth. Recently, Grace [13] proposed a new one-dimensional theory of non- 
steady penetration of long rods into semi-infinite targets. In his model, the target is modeled 
as a finite mass that resides within the semi-infinite target and undergoes erosion and 
deceleration during the penetration process. Based on Newton's law, deriving the equations 
of motion for the target and the penetrator leads to a new u-v  relationship that has replaced 
the modified Bernoulli equation. 

Evidently, there are some deficiencies in the theory of Tate and Alekseevskii in spite of the 
fact that it has been broadly thought of as a standard reference for one-dimensional long-rod 
penetration over the past decades. Indicating the fact that this model does not consider mass 
transfer into the plastic zone and a non-zero mushroom strain at the penetrator tip, Jones 
et al. [14] used the impulse-momentum equation to modify Tate's equation of motion for 
the undeformed section: 

to + i(v - u) = PB (1) 
p(1 + e) 

where I is current length of the undeformed penetrator, of which the current velocity is v, and 
u is the penetration velocity of the penetrator tip. The parameter p represents the rod density 
and e is the mushroom strain, which is assumed constant throughout the quasi-steady state. 
The term PB is the penetrator/target interface pressure, estimated by the modified Bernoulli 
equation. In this equation, the relative velocity term at the left hand side provides the 
contribution to momentum due to mass transfer into the plastic zone and the strain factor 
e reflects the mushrooming effect at the tip of the penetrator. Compared with Eqn (1), Tate's 
model has assumed the plastic region is instantaneously consumed, which renders no change 
in momentum and a 0% compressive strain. Although Eqn (1) can characterize the 
penetration process in more detail, the pressure term based on the modified Bernoulli 
equation is ad-hoc. It is apparent that the pressure used by Tate, which in effect causes a 0% 
compressive strain to the penetrator tip, must be too high for a penetrator with a non-zero 
mushroom strain. Therefore, Cinnamon etal.  [15] tried to reduce the net force by 
introducing a factor to account for the variation of the pressure across the mushroom face. 
This factor is further correlated to the target strength. With this factor n added, Eqn (1) 
becomes 

lb + [ (v  - u )  = PB 
p(1 + n) (1 + e)" (2) 

Accompanied with an initial transient analysis and a linear relationship between crater 
volume and kinetic energy, reasonable predictions can be obtained for impact velocities from 
1 km/s to 3 km/s. However, an attempt to integrate the equations analytically and piece 
together the initial transient and quasi-steady state motions does not succeed due to the 
presence of a singularity. Consequently, Cinnamon [ 16] made a further analysis in which the 
average pressure at quasi-steady state is assumed constant over the range of impact velocities 
for particular shot combinations. The average pressure is again correlated to the target 
strength. A similar attempt to integrate these equations analytically by replacing the 
modified Bernoulli pressure PB in Eqn (1) with the average pressure also cannot be 
accomplished due to the presence of a singularity. The reason for this may be the answer for 
the unsuccessful implementation of modified pressure laws in the model. This suggests that 
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a reconstruction of the u-v relationship may be necessary in this model, and that a more 
accurate pressure law may depend on more than densities and strengths. 

In this paper, the model proposed by Jones et al. [14] is re-examined. Based on the work of 
Wang and Jones [17], the original equation of motion will be decomposed into two parts to 
account for the motions of the mushroom region and the undeformed portion of the 
penetrator separately. As a result of incorporating these two equations with the kinematic 
equation derived by Wilson et al. [18], a new pressure law is proposed to replace the modified 
Bernoulli equation. This new estimate for pressure, taking the effect of mushroom strain in 
the penetrator tip into account, leads to a new interpretation of the interaction between the 
pressure and. the penetrator during penetration. 

Two different cases are considered to implement the pressure law in the model and 
reasonable agreement with experimental data is achieved with each. In the first case, the 
pressure is a~sumed velocity independent (constant) and a new u-v relationship is construc- 
ted. Direct integration of this system leads to a closed form solution for the penetration depth. 
The constant pressures are obtained by matching the penetration depths and then further 
correlated to the target strengths. In the second case, a velocity-dependent pressure with 
a shape factor is considered. Numerical integration is required to obtain the penetration 
depths. The shape factor, which was first proposed by Alekseevskii without physical 
interpretatic,n, is also correlated to mushroom strain. With these considerations, 
the previous singularity problem is removed and reasonably accurate predictions can be 
achieved. 

DEVELOPMENT: A NEW PRESSURE LAW 

Although Eqn (1) contains the motions of the mushroomed tip and the undeformed (rigid) 
part of the penetrator, its validity is undermined when the force (pressure) that controls 
deceleration is incorrectly assumed. The equations of motion are separately derived for the 
mushroom and the undeformed portions of the penetrator, as illustrated in Fig. 1.From the 
free body diagram of the mushroom, the equation of motion over the time t to t + At is 
obtained from Newton's 2nd law: 

P(-  AIAo) [ ~ - ~  ] = aA - aoAo. (3) 

The ratio in the bracket represents the acceleration of the mushroom over At. The area of the 
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Fig. 1. Free body diagrams of the undeformed and mushroom head (shaded area) of a rod during the 
time interval At. 
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fully developed mushroom, A, and the area of the original penetrator, Ao, can be correlated to 
the engineering strain e: 

Ao 
e = ~- 1. (4) 

Accordingly, let At approach zero and use Eqn (4), and Eqn (3) becomes 

O" 
p i ( v - u ) - l  +e  a°" (5) 

Similarly, from the free body diagram of the undeformed section, the equation of motion has 
the form: 

Av 
p Aol-~ = aoAo (6) 

and let At approach zero, the Eqn (6) becomes 

plf) = a o. (7) 

Note that a is the penetrator/target interface stress and a o is the internal stress exerted 
between the plastic region and undeformed portion of the penetrator. Both of these two 
stresses are time-dependent in nature. Note that if we combine Eqn (5) and (7) by eliminating 
the term a o, the resulting equation is exactly the same as Eqn (1). Moreover, Eqn (7) is 
actually the equation of motion used by Tate [2], if we assume that a o is the dynamic yield 
stress for the penetrator. 

Now, we introduce the kinematic relationship derived by Wilson et al. [18], which has the 
form: 

e i  = v - u.  (8) 
By eliminating [ term between Eqn (5) and (8) and solving for a, we arrive at an expression for 
the target/penetrator interface stress (pressure): 

P = - ( 1  +e)lP(VeU)2+ao]- - (9) 

where a has been replaced by P and the negative sign denotes compression. Before we 
make further use of Eqn (9) to solve a penetration problem, more insight into this equation 
should first be made. If we compare Eqn (9) with the modified Bernoulli equation used by 
Tate [2], the dimensionless coefficient of the term ( v -  u) 2, - ( 1  + e)/e, in Eqn (9) is more 
general than 1/2. The socalled shape factor proposed by Alekseevskii [1] can be reflected by 
this coefficient as well. It should be clear that the mushroom strain influences the interface 
pressure. 

A PENETRATION MODEL BASED ON CONSTANT PRESSURE 

Based on Eqns (7-9), a new penetration model can be established once an estimate for 
P has been found. To begin, we assume that the target/penetrator interface pressure is 
approximately constant throughout the steady state. Actually, this assumption dates back to 
the early eighteenth century work of Robins and Euler [19]. However, it is only applicable to 
the penetration of nondeforming projectiles at low velocities [19, 20]. Considering the 
penetration of deforming penetrators, Christman and Gehring [21] used this assumption to 
typify steady state penetration. The validity of this assumption has also been discussed by 
Anderson et al. [9, 12] using a numerical simulation. Based on the constant pressure, the u-v 
relationship is thus obtained directly from Eqn (9) in terms of P: 

= _ [ I (  - e ,  "~-],/z 
u v [ _ p \ l + e  P-e,ao)|_~ (10) 

where e has been replaced by el, which denotes the constant strain during quasi-steady state 



An elementary theory of one-dimensional rod penetration using a new estimate for pressure 269 

penetration. Accordingly, the difference between the penetration velocity u and the current 
velocity v is also constant. Now, we incorporate Eqns (7) and (8) to obtain 

f f  (v - u)dv = a°el ~lf dl 
P JLo~- (11) 

where V is the initial impact velocity and l~, is the residual length of the undeformed section at 
the end of the steady-state phase. Because the difference between u and v is a constant, a direct 
integration of Eqn (11) gives 

( K p V ~  (12) 
If = L o exp elao / 

where K = v - u = constant, which comes from Eqn (10). By assuming that a final transient 
phase adds little to total penetration, the total steady-state penetration depth z at u = 0 can 
now be obtained by evaluating the integral: 

(13, 

After integration, a closed form solution for z can be found: 

pLo 
z = - - -  [-exp(a(K - V)) + (aV - aK - 1)] (14) 

a2ffo 
where a = pK/aoe 1 is a constant. It should be noted that a o represents the dynamic yield 
strength of the penetrator, which is treated as an empirical constant. At this point, the 
remaining problem is how to find P. 

Determining the constant pressure 

One straightforward way to determine the constant pressure is to find the pressure that can 
best match the experimental data for penetration depth. The mushroom strain is obtained 
from the experimental data of crater diameters. It is noted that the current model does not 
explicitly account for the influence of the target strength factor (R) but that of the penetrator's 
dynamic yield strength %. According to Anderson et al. [ 11], the penetration performance is 
more susceptible to the target strength than the penetrator strength. Consequently, it is 
anticipated that these P values may be correlated to target strengths. After investigating the 
experimental data, only the P values that best fit the penetration depths at low velocities 
(1 km/s-2km/s) were obtained. Moreover, it is found that the value of P in each case is 
approximately twice the dynamic yield strength of the target. However, at higher velocities, 
this P - R  relationship underestimates penetration performance. Conceptually, this can be 
understood from the impulse-momentum equation that develops the model. This approach 
relates the time-dependent (or velocity-dependent) penetration force to the product of 
a constant pressure and impact velocity-dependent mushroom strain (or area). At low impact 
velocities, the increasing force can be approximately reflected by the product because of 
increasing mushroom area, when impact velocity increases. However, as the impact velocity 
gets higher, ~Lhe mushroom area is approaching some asymptotic limit [15], so the product 
cannot keep up with the increasing trend of the force. This accounts for the limitation of the 
application of constant pressure at lower velocities. On the other hand, for low-aspect-ratio 
penetrators, because a quasi-steady state penetration process may be very short, or may not 
even be reached, the assumptions of quasi-steady state and constant pressure are not 
appropriate. Besides, the dynamic yield strengths of some soft targets (like 1100-O AL and 
lead) are usually very strain-rate sensitive at higher strain rates [22, 23], so a constant value 
for R is not appropriate. Based on these considerations, the constant pressure model has been 
mainly used to investigate the cases involving aspect ratios greater than 10 and steel targets. 

Prediction based on the constant pressure 

A huge database of penetration mechanics compiled by Anderson et al. [24] has been used 
to examine the validity of the proposed models in this paper. The predictions based on 
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Fig. 2. Normalized penetration depth (Z/L) vs impact velocity (V). 
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Fig. 3. Normalized penetration depth (Z/L) vs impact velocity (V). 

constant pressure show common S-shaped penetration curves. For the cases involving steels 
against steels (e.g. Figs 2-4) and tungsten alloys against steels (e.g. Figs 5 and 6), the 
theoretical predictions (crosses) can reasonably match the experimental observations 
(circles) at velocities between 1 km/s and 2 km/s, but suffer considerable error when the 
velocities exceed 2 km/s. In addition to the previously stated limitation at low velocities, 
it is possibly due to inertia effects which become more significant relative to strength 
effects at higher velocities. Numerical simulation also shows that the magnitude of the 
nonsteady state of penetration increases with impact velocity, and that it contributes 
significantly to the total penetration at the higher impact velocities 1-12]. Thus, a velocity- 
dependent pressure will be invoked to cure the deficiency in the current model. The 
uncertainties in the experimental data of crater sizes apparently can cause some scattered 
predictions. For the cases investigated, realistic estimates for material strengths (a o or R) 
have been used: Cll0Wl-1200 MPA, St37-860 MPA, St52-960 MPA, St3-1300MPA, 
D17-1600 MPA, and W8-1800 MPA. 
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A PENETRATION MODEL BASED ON VELOCITY-DEPENDENT PRESSURE 

As the constant-pressure model has indicated, the accuracy of the prediction is reasonably 
good at low impact velocities ( < 2 km/s) for long rods. The predicted S-shaped trend does not 
match well in the high velocity range (>~ 2 km/s). In addition to inertia effects at higher 
velocities, the interface pressure may change with the deformation at the penetrator tip 
(mushroom strain) and penetration velocities. The assumption of constant pressure through- 
out the quasi-steady state cannot account for these factors. Motivated by these observations, 
a velocity-dependent pressure is considered to modify the previous elementary pressure 
estimate. 

Shape factor 
Although Eqn (9) has represented the interface pressure P in terms of the current 

penetration velocity u and current undeformed section velocity v, one more equation is 
needed to construct the relationship between u and v if P is velocity-dependent. Let's recall 
the theory proposed by Alekseevskii [1], who considers the pressure balance across the 
target/penetrator interface and postulates the following equation: 

Y + kppp(1) - u) 2 = R + ktPt u2 (15) 

where kp and k t are shape factors that characterize the deformed regions in the penetrator and 
target materials, respectively. Y and R represent the dynamic strength of the penetrator and 
target, respectively. Simply indicating that these two shape factors depend on the flow 
geometry and assuming that they are approximately 1/2 based on the hydrodynamic model, 
Alekseevskii does not give any further physical insight into these factors. Swanson and 
Donaldson [25] proposed a so-called integral theory of impact to model the long rod 
penetration process. In their model, they assume the target/penetrator interface pressure is 
governed by fluid drag, Cd, and the adiabatic hardness. The adiabatic hardness is used to 
explain the strength factor for the target and is defined as the product of the target density, Pt, 
and the energy per unit mass dissipated in the form of plastic work as the target flows around 
the penetrator, E*. Thus, the interface pressure assumes the following form: 

where u is penetration velocity. It is not difficult to find that the dimensionless drag factor C d 
in Eqn (16) plays a very similar role to the shape factor k t in Eqn (15). Lately, Rosenberg et al. 
[5] considered the equilibrium of force at rod/target interface by introducing effective 
cross-sectional areas of the rigid rod and its mushroomed front end to the modified Bernoulli 
equation. The resultant area ratio, which was specifically taken as two in their model, is 
somewhat like the shape factor mentioned by Alekseevskii [1]. On the other hand, the 
coefficient - ( 1  + el)/e 1 in Eqn (9) has also revealed the possible physical meaning of the 
shape factor kp in Eqn (15). Based on the above overview of the shape factor, it is reasonable 
to assume that the pressure has the form: 

P=ktPtu2+R=-(I-k-el)[P(v~ u)2 t-trol (17) 

where k t is a constant and will be determined later. R represents the dynamic yield strength of 
the target, which for example, can be determined by a Taylor impact test. Equation (17) thus 
establishes a new u-v relationship. Particularly, if k t and - (1  + el)/e I are both set equal to 
1/2, then Eqn (17) returns the modified Bernoulli equation. Or, in other words, the modified 
Bernoulli equation is a special case of Eqn (17) when el = - 2/3 and the penetrator's strength 
(Y) is one third of its dynamic yield strength. It is interesting to note that e 1 = - 2/3 is the 
critical value of the tip strain in the earlier penetration theory of Jones et al. [14], which was 
further elaborated by Gillis et al. [26]. 
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Derivation of the model 
A new penetration model based on velocity-dependent interface pressure can be developed 

by incorporating Eqn (7), (8), and (17). For the sake of convenience, we rewrite Eqn (17) as 

P = k i t / 2  + R = k2(v - u) 2 + Y (18) 

where 

and 

kl=ktp, 

{ 1  + e l "  ~ 

Y = - (1 + el)tr o. 

Note that % is negative because it is a compressive stress. From Eqn (18), we can rearrange 
and get a quadratic equation in u: 

(kl + k2)u  2 + 2k2vu + (k3 - k2v  2) = 0 (19) 

where k 3 --- R - Y. A further solution for u depends on the sign of the coefficient (ka - k2). By 
letting (2 = k~/k2, u can be written in the following form: 

v - ; I v  ~ - A ]  1/2 
u = 1 - ~2 (20 )  

k 3 
for k 1 # k2, and A =7- (1  - (2), or 

K1 

k2 v2 - k 3 
u = (21) 

2k2v 

for k 1 - - - -  k2- Based on Eqns (20) and (21), the residual length of the penetrator can be obtained 
by evaluating the integral in Eqn (11). Consequently, the residual penetrator length has the 
form: 

l + x//-~- + A ]tpA~/2el,o(1-~)] 

x expl- P~ [(vx/v2+A-~vZ)-(VxSV~+A-~V2)]] 
L2elao-G- ~ 2 ) 

(22) 

for k~ 4: k 2, or 

Lo L4elao 

for k 1 = k 2. blow, the penetration depth z can be obtained by solving 

z=fudt=fUdv=Pfuldv  

(23) 

(24) 

which is similar to Eqn (13). A numerical integration is required to evaluate the integral in 
Eqn (24). 

According to Tate's theory 1-27], there exists a critical velocity during the deceleration of 
the penetrator, below which rigid body penetration will continue if Y > R and a further 
erosion of the penetrator without gaining penetration depth will continue if Y < R. A similar 
consideration can be made for the current model. 
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I. Rigid body penetration. This implies v = u and l is constant, so we can solve for the 
critical velocity v~ from Eqn (18): 

F Y -  R ] 1/z (25) 
V°=L kl J ' 

Because the penetrator remains rigid in this stage, the interface pressure should be the stress 
responsible for decelerating the residual penetrator (with mushroom tip and constant length). 
Hence, we transform Eqn (7) to 

pplcf; ---- -- (klv 2 + R) (26) 

where l~ represents the residual length that corresponds to v = v,, and can be found from 
either Eqn (22) or Eqn (23). Integrating Eqn (24) by using Eqn (26), the penetration depth 
during this stage is obtained: 

ppl¢, Fk~v~ + R]  
z, = ~ m L -~- J" (27) 

Thus, when T > R, the total penetration depth is equal to the sum of Eqns (24) and (27). 

II. Erosion without penetration. This implies u = 0, so we can solve for the critical velocity 
vc from Eqn (18): 

[ R -  Y11/2 (28) 

V'=L k 2  d " 

In this stage, the interface pressure is not high enough to make the target material deform, but 
high enough to continue the material flow across the rigid-fluid interface of the penetrator. 
Therefore, the undeformed section of the penetrator is decelerated by its dynamic yield 
strength. That is, Eqn (7) is still valid. Accompanied with Eqn (8) (u = 0), Eqn (7) can be 
integrated to give the final length: 

[ p v ~ ]  (29) 
If = I c exp 2elaod. 

From the previous discussion, it is likely that most of the penetration problems fall in the 
second type, erosion without penetration. This is because the strength factor of penetrator 
(Y) is reduced by the factor - (1  + el). This implies that at the end of penetration, once v < v~, 
the second type of penetration is the most likely case. Up to this point, we have established 
a new penetration model based on a new pressure law, but the shape factor k t is still 
unknown. 

Determining the shape factor 
In order to investigate the behavior of the shape factor, we find its value for each shot by 

matching the experimental depth data. Motivated by the previous observation that the shape 
factor kp is a function of e 1, we make the same assumption for k t. After examining all the cases, 
a common trend can be found: 

kt(el)~ oo when e 1 ~ e  o (30) 
k t (e0~0  when el ---, - 1 

where e o and k o are both constants. This relation implies that the shape factor becomes large 
when the mushroom strain approaches some constant (at low velocities) and approaches 
a small constant value when the mushroom strain approaches - 1 (at high velocities). From 
another viewpoint, this relation is also conceptually similar to the definition of the drag 
coefficient. Based on Eqn (30), the hyperbolic-type property of kt(e 0 can be approximated by 
taking the first three terms of a power series of the form: 5-,,__= ~o c,(e x _ eo)-," That is, 

ci c2 (31) 
k t ~ c O -t (el - eo) F (el -- eo) ~ - - - - - ~  
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where Co, cl, and c 2 are constants to be determined after a value of e o has been assumed. For  
most of the cases, e o is chosen to comply with k t = 0 when e 1 = - 1. That is, ko in Eqn (30) is 
normally zero. In only one case, "AL alloy on lead", has k t been non-zero as el approaches 
- 1. In such cases, a maximum trend for the penetration curve can be obtained. On the other 
hand, it is also found that for most high-aspect-ratio (LID >1 10) cases, c o can be simply set 
equal to zero. The exceptions to this are the low-aspect-ratio cases (LID = 3), "1100-O AL on 
1 1 0 0 - O  AL" and "C1015 steel on C1015 steel". In these cases, c o has a significant contribu- 
tion in determining k t. However, a further attempt to find regularities among these three con- 
stants, or to correlate these constants to other physical parameters, is difficult due to many 
untractable uncertainties in material properties. 

Prediction based on velocity-dependent pressure 

By using the strains predicted by the initial transient analysis from Wang and Jones [28], 
the current model is again tested with a large volume of experimental data. Some selected 
results predicted by the model, compared with the experimental data, have been presented 
graphically in the form of normalized penetration depth (Z/L) vs impact velocity (V). The 
predicted results agree well with the experimental data over an impact velocity range of 
0-4 km/s. The S-shaped curve is also reasonably well reflected by the model. 

As Fig. 7 shows for the case of aluminum alloy penetrators against lead targets (LID = 10, 
a0 = 275 MPa, and R = 60 MPa), the current model can successfully show the maximum 
trend of penetration performance, which cannot be achieved in some of our previous work. 
Figure 8 shows reasonable agreement throughout the whole impact velocity range for the 
case of D17 WA against St52 steel targets (L/D = 10, a o = 1600 MPa, and R = 960 MPa). As 
to the cases of C1015 steel on C1015 steel (L/D = 3, a o = R = 650 MPa) and 1100-O AL on 
1 1 0 0 - O  AL (L/D = 3, ao = R = 160 MPa) shown in Figs 9 and 10 respectively, the increasing 
trends to Z/L at higher velocities (V > 2 km/s), which cannot be captured by our previous 
models [4, 16], can now be accurately predicted by the current model. 

C O N C L U S I O N  

In this paper, an attempt has been made to modify the modified Bernoulli equation used by 
Tate. By decomposing the equation of motion proposed by Jones et al. [14] into two parts, 
a new analytical form for the interface pressure has been developed. This pressure form is 
more general than the modified Bernoulli equation because the mushroom strain effect is 
included. As a first approximation, a constant interface pressure (P) was assumed dominant 
through the quasi-steady state, which gives a new relation between the current tail and the 
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penetration velocity [Eqn (10)]. By employing the experimental strains, P for each case is 
found and is approximately twice of R. Based on this constant pressure, the model can be 
integrated analytically and a closed-form solution for penetration is obtained. This removes 
the singularity problem that has often prevented the integration of the equations of motion 
introduced b'.¢ Jones et al. [14]. However, the predicted penetration depths show reasonable 
agreement only in cases with low impact velocities and large aspect ratio. Moreover, most 
of these cases involve WA or steel penetrators against steel targets. For the penetrations 
at higher velocities, a constant P - R  relationship may lose effectiveness because the effect 
of inertia and the contribution of nonsteady state penetration become more significant. 
Accordingly, the pressure distribution may be more velocity-dependent. Despite these 
disadvantages, the constant-pressure model reveals a promising direction for the con- 
struction of a new pressure law. 

Motivated by the constant-pressure model, a velocity-dependent pressure law was for- 
mulated. The new pressure law is suggested by equating the previously developed pressure 
from the viewpoint of the penetrator to an assumed pressure with a similar structure from the 
viewpoint of the target. By recalling the original theory proposed by Alekseevskii [1], the 
obscure "shape factor" was reconsidered and identified in terms of the new pressure law. 
From the viewpoint of the penetrator, the shape factor is a function of the mushroom strain, 
but from the viewpoint of the target, the shape factor (kt) cannot be obtained a priori and 
has to be determined by examining the experimental data. All the distributions of k t vs the 
strain were commonly hyperbolic, which can be approximated by an inverse power series 
expansion wJith respect to the strain. Nevertheless, further effort failed to correlate the 
coefficients of the series to known physical parameters. However, with the shape factor added 
to the model, the system can be integrated numerically without any singularity problem. 

This mode]i gives a more accurate prediction than the constant-pressure model, as long as 
the shape factor is properly chosen and a correct strain trend is determined. It is noteworthy 
that the velocity-dependent pressure enables the model to capture the maximum trend of the 
penetration curves for soft targets, which has invalidated some of the previous models. For 
penetrations by low-aspect-ratio penetrators, better agreement can be achieved because the 
shape factor probably has offset the deficiency of the assumption of quasi-steady state by 
taking the flow geometry at the penetrator/target interface into account. 

Finally, as a comparison with the numerical simulation made by Anderson et al. [12], 
by choosing an average mushroom strain of -0.8, the pressure predicted by the velocity- 
independent model is plotted as a function of impact velocity for the shot combination of 
D17 on W8 [124-1 in Fig. 11. The increasing trend of pressure with impact velocity is generally 
consistent wkh the observation from numerical simulation when e is constant. On the other 
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Fig. 11. Interface pressure (P) predicted by velocity-independent model vs impact velocity (V). 
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Fig. 12. Interface pressure (P) predicted by velocity-dependent model vs scale time (tV/L). 

hand, the pressure predicted by the velocity-dependent model is plotted as a function of 
scaled time for the shot combination of D17 on St52 [24] in Fig. 12. By choosing an average 
mushroom strain of -0 .8  and four typical impact velocities, similar to those used by 
Anderson e t  al. [ 12], similar increasing trends of pressure with impact velocity are obtained. 
However, the predicted pressure is apparently much lower than that obtained from the 
numerical simulation. This is due to the increase in area at the penetrator tip. A compressive 
strain -0 .8  is the equivalent to increasing the diameter by a factor of 2.24. 
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