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Summary--A simple one-dimensional model is used to examine geometrical and scale effects in the 
penetration of thick metal targets by projectiles. The model is used in two forms, one assuming the 
penetrator deforms by mushrooming and the other assuming it is eroded. The mushrooming version 
gives good predictions of depth of penetration at low velocities where the erosion version overesti- 
mates depth of penetration, but at typical ballistic impact velocities the models bound the experimen- 
tal data from below (mushrooming) and above (erosion). Both versions of the model give good 
predictions of depth of penetration for low length to diameter (L/D) ratio penetrators at all velocities. 
The model solutions match experiment in simulating the effect of penetrator L/D ratio and scale and 
this is attributed to the inclusion of radial inertia and shear effects which are not considered in 
modified hydrodynamic models of penetration. Differences between penetrator materials based on 
penetrator strength are also evident in the model computations. 

Key words: ballistic impact, penetration mechanics, armour, penetrator L/D ratio, penetrator scaling, 
finite difference modelling. 

NOTATION 

d diameter of a cylindrical element 
D projectile diameter 
F force 
h height of a cylindrical element 
L projectile length 
n constant (material work hardening exponent) 
P depth of penetration 
R~ resistance to penetration (hydrodynamic model) 
V velocity 
Y yield stress 
e strain 
p material density 
a stress 
a o constant (material strength) 

1. INTRODUCTION 

The modified hydrodynamic theory for the penetration of thick monolithic metal targets by 
cylindrical projectiles predicts that the depth of penetration (P) divided by the penetrator 
length (L), or the P/L ratio, is a function of impact velocity and the strengths and densities of 
the impacting materials, and reaches a maximum at high velocity which depends only on the 
square root of the relative densities of penetrator and target [1-4]. Maximum depth of 
penetration at high velocities is achieved by maximizing penetrator length and density. 
Depth of penetration increases with penetrator length to diameter ratio for penetrators of 
constant mass. Experimental observations [5-7] have, however, shown that contrary to the 
simple hydrodynamic theory the relationship between P/L and velocity is not independent of 
the LID ratio. Thus Frank and Zook [8] pointed out that small LID ratio penetrators "behave 
like constant mass penetrators" giving greater effective penetration capability. Efforts have, 
therefore, focussed on putting both concepts together to obtain maximum penetration 
performance by making the maximum length penetrator out of many segments, each with 

369 



370 R.L. Woodward 

a low L/D ratio. Rosenberg and Dekel [9] have pointed out that the effect of L/D ratio on P/L 
is easily distinguishable in comparing LID = 10 and LID--20 performance data. Other 
parameters which have been shown to differentiate P/L vs velocity data include the scale (or 
absolute dimensions) of the penetrators and the material type, with tungsten alloy penetra- 
tors showing consistently poorer performances than depleted uranium (DU) penetrators of 
similar strength [10]. 

One-dimensional models provide useful tools for understanding the physics of penetration 
processes, for doing parametric studies and for rapid turnaround of performance assess- 
ments. There is some advantage, therefore, to be gained in understanding the significance in, 
and the reasons for, differences between model predictions and experiment. Rosenberg and 
Dekel E11] approached this by comparing the modified hydrodynamic model with two- 
dimensional simulations of penetration problems to examine the relationship between the 
resistance to penetration (Rt) and impact and material parameters. The dependencies of R, on 
velocity and target strength observed, suggest some aspects of the physics are not represented 
in the modified hydrodynamic model. In the present work a one-dimensional model 
developed by Woodward E12, 13] is used to examine a range of reported experimental data 
which illustrate the dimension and scale problems with which the modified hydrodynamic 
approach has difficulty. By taking into account the effects of radial inertia [ 14, 15] this model 
has some success in separating out the influences of LID ratio as observed in experiments. 
Two concepts are studied where the projectile is modelled as either a mushrooming or an 
eroding cylinder, these giving better predictions of experimental data at low and high 
velocities respectively. 

DESCRIPTION OF MODELS 

The principal features of the Woodward [12, 13] model (referred to as the mushroom- 
ing model) are illustrated in Fig. l(a) in which both the target and penetrator are described 

[ _ _ J  
ELEMENT 

SURFACE 

1 MUSHROOMING MODEL l [ EROSION MODEL 

(m) (b) 

Fig. 1. Concept of the lumped parameter model developed by Woodward [12, 13] showing (a) the 
original mushrooming version and (b) the erosion version. In the model both the penetrator and 
target are represented as a stack of cylindrical elements, with each element made up of a link and 
a point mass. The relationship of the model to the physical problem is indicated schematically for each 

version. 
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as cylinders impacting end on, with each cylinder being made of a series of elements 
characterized by a mass and a ligament, the latter having the stress-strain properties of 
the material it represents. On impact the cylindrical elements deform in compression. 
Increased resistance to radial expansion of the element is provided by confinement or 
constraint where the element diameter either equals or exceeds the hole diameter (defined 
as the diameter of the interface projectile element) and where the element would also be 
inside the target (as defined from the original position of the first target element). Resis- 
tance is also provided by shear between the element and the target hole wall. Simi- 
larly the target elements are compressed, they experience resistance to radial expan- 
sion because of the surrounding constraining target material, and they also experience 
a shear resistance between the cylindrical element and the rest of the target as the cylinder 
is pushed forward. The resistance to radial extrusion due to surrounding confinement 
is in the form of an increment in flow stress as demonstrated in simple constrained 
compression tests [12, 16, 17], and the method is analogous to the approach taken in 
the analysis of indentation testing of semi-infinite metallic bodies [18]. The solution 
of the equations of motion for the element masses uses a finite difference technique [19, 20] 
to examine their motion as a function of time. Important to this study is that dynamic 
compression of material cylinders requires radial extrusion, and the associated radial 
acceleration of material is achieved at the expense of work done by the impacting pro- 
jectile, and an associated increase in force for the compression of each cylindrical ele- 
ment. The force, F, for compression of a cylinder of diameter, d, and height, h, is given 
[ 15] by: 

3 v /dV1 

where Y is the material flow stress, V is the velocity of compression (or the velocity difference 
across the element), and p is the material density. 

In the right-hand side of Eqn (1), the first term is the resistance to compression due to 
material strength for simple uniaxial conditions, and the second term is the effect of radial 
acceleration of the material. The increased force is a direct outcome of the requirement to do 
work on ejecting material to increase its kinetic energy 

Erosion of penetrator (and target) material in the mushrooming model of Fig. l(a) is 
achieved simply by removing elements as they reduce to less than one tenth of their original 
length, at which time the mass of the element in the line of penetration is considered to 
be contributing little to the total inertia of the stack of cylinders. This pragmatic approach 
avoided the difficulties of describing the shear removal of mass in a one-dimensional 
system. 

A modified version of the original model is illustrated in Fig. l(b) and is referred to as 
the erosion model. It uses the same element structure, consideration of compression, 
shear, confinement and radial inertia forces, and finite difference solution method as the 
mushrooming model. However, in it also considers that once material is extruded 
beyond the original diameter of the projectile it does not contribute to penetration of 
the target and is "eroded". Thus the effective hole diameter becomes the original projectile 
diameter, elements are of variable mass (i.e. they erode continuously as they are com- 
pressed and extruded), and the calculations of both the radial inertia term, Eqn (1), and 
the shear resistance to element movement are governed by the original projectile dia- 
meter, rather than an expanded element diameter as was the case with the mushroom- 
ing model with its constant mass elements. The structures of the models lead us to 
anticipate the mushrooming model. Fig. l(a) will be a better approximation for low velo- 
city impacts and underestimate depth of penetration, and the erosion model should 
be a better approximation for high velocity impacts and overestimate the depth of penetra- 
tion. 

The equations for solution in using the model are set out in difference form in the 
Appendix. 
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Fig. 2. Comparison of model predictions with experimental data for L/D = 1 and 10 tungsten alloy 
penetrators fired into steel targets. The model predicted results are shown by the continuous lines. 

COMPUTATION RESULTS 

The main features of model results are shown in calculations of depth of penetration 
compared with published experimental data [5-7] on tungsten alloy LID = 1 and 10 
penetrators fired into steel targets (Fig. 2). The mushrooming version tends to underestimate 
depth of penetration for high LID penetrators, particularly when the velocity exceeds 
1000ms-1, although at very high velocities, >2500ms-1, it overestimates. The erosion 
version, on the other hand, overestimates depth of penetration for high LID penetrators up to 
about 1700 ms- t but is a good match to experimental data above that velocity. For low LID 
penetrators the two versions give similar results which are acceptably close to experiment. 
Clearly the model is capable of distinguishing the effect of L/D ratio, the main reason being 
the inclusion of the radial inertia term, Eqn (1), which is geometry dependent. For low L/D 
penetrators radial flow of material is difficult which is reflected in less penetrator deformation 
and smaller diameter, deeper penetration craters. 

The effect of LID ratio on penetrator performance is illustrated with a comparison 
between experimental data of Tate et al. [21] and calculations using the mushrooming 
version of the model in Fig. 3. The experimental data [21] included three groups of 
length to diameter ratio penetrator (LID values 3, 6 and 12) and also three distinct pene- 
trator masses in each group. The LID = 6 data with its three distinct masses is compared 
with predictions of the mushrooming version of the model in Fig. 3(a) showing a different 
depth-velocity curve for each mass of penetrator (size indicated by diameter). When all nine 
sets of experimental data were consolidated and the parameter depth divided by penetrator 
diameter (P/D) plotted against velocity, then the nine distinct depth divided by velocity 
curves group into three bands each governed by the LID ratio of the particular penetrators, 
as shown in Fig. 3(b). The mushrooming version of the model likewise condenses all 
the nine sets of computations into three corresponding P/D velocity curves. A similar 
grouping is found if depth divided by penetrator length (P/L) is plotted as in Fig. 3(c). 
Clearly the comparison of Fig. 3 shows that the mushrooming version of the model correctly 
calculates the effects of geometry on penetrator performance in both the magnitude and the 
phenomenological aspects. It is also clear from Fig. 3 that the quantitative agreement is 
better for low LID ratio penetrators, and for the LID = 12 penetrators this version of 
the model considerably underestimates depth of penetration above 1000ms-1 impact 
velocity. 
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Fig. 3. Comparison of predictions of the mushrooming version of the model with experimental data 
of Tate et aL [21]: (a) depth as a function of velocity for L/D = 6 penetrators of three distinct masses 
(and corresponding rod diameter), (b) depth of penetration divided by projectile diameter (P/D) as 
a function of velocity for three L/D ratio and for each of the three projectile masses, and (c) depth of 
penetration divided by projectile intial length (P/L) as a function of velocity for the same nine data sets 

as in (b). 



374 R.L. Woodward 

P/L 

1.4 

1.2 

1.0 

0 .8  

0.6 

+ 
L/D 
12 
6 
3 

,? 

X 

X ~ 

x; 
x 

© , 

L/D.:I 

L/D=II 

L'D=12 

0.4 

0.2 

(c) 

. . - _ _ _ . _ . k . _  

750 1000 1250 

VELOCITY (ms "I) 

Fig. 3 (Continued) 
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A similar comparison to that above is shown in Fig. 4 for the erosion version of the model. 
Apart from the lowest LID ratio case (LID = 3), the erosion model overestimates depth of 
penetration. As Fig. 4(c) shows, the erosion model does not discriminate for different LID 
ratios, as occurs in experiment at the lower velocities, however, above about 1600 ms 1 the 
model behaviour does mirror the experiment data. 

Figure 5 shows a comparison of P/L vs velocity data for a range of experiments as 
presented by Rosenberg and Dekel [9] for LID 10, 20 and 23 penetrators and for both 
versions of the model. The mushrooming version comparison, Fig. 5(a), shows an underesti- 
mate of depth of penetration but a clear separation of results on the basis of LID ratio. The 
erosion version, Fig. 5(b), gives a better estimate of the magnitude of the depth of penetration 
and again discriminates on the basis of LID ratio with the magnitude of the L/D effect being 
similar to that shown in the experimental results. As with the earlier cases the erosion version 
of the model overestimates depth of penetration at low velocities, but tends to predict 
correctly from about 1600 ms i impact velocity and higher. 

In Fig. 6 is shown experimental data of Magness and Leonard [10] for the penetration of 
L/D = 19, full-scale, DU penetrators and for LID = 20, full-scale, tungsten, as well as one 
quarterscale tungsten and DU penetrators, compared with calculations using the erosion 
version of model. The ordering of experimental data with DU performing better than 
tungsten alloy and with full-scale penetrators performing better than quarterscale penetra- 
tors is reflected in the computational predictions. As in the previous examples, the mush- 
rooming model underestimated depth of penetration substantially for these penetrators and 
at this velocity range. Although the correct ordering of data is reflected by the erosion 
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version, the uncertainty in the calculations is only of the order of the width of the interval 
between the lower three sets of computational results. This uncertainty in the calculations 
results from the size of the time step, element size and minimum thickness when an element is 
considered as no longer to contribute to penetration capability (one-tenth original height). 
The difference between tungsten and DU in the model computations results from differences 
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in properties used for the calculation, the principal ones being ~o and n in the constitutive 
relation adopted: 

o- = aoe" (2) 

where ~ is stress and e is strain. Values used for ~o and n were 2440MPa and 0.118 
respectively for DU and 1967MPa and 0.25 for the tungsten alloy. The model 
does not include aspects related to the physics of failure which are normally linked 
with the difference in performance between tungsten alloy and DU penetrators. The 
debate is still open on what causes deeper penetration for DU compared to tungsten 
alloy penetrators because Kimsey and Zook et al. [22] have shown that the inclusion of 
thermal softening into code simulations of tungsten alloy penetrators allows deeper 
penetration, of the order of magnitude expected from the difference between DU and 
tungsten alloy performances and without adiabatic shear failure considerations. This 
accords with the differences based on strength shown in Fig. 6, although the present model is 
not written to include thermal softening explicitly at this stage. Although at the scale 
difference of Fig. 6 (full-scale and one-quarter) it is possible to distinguish scale effects, 
this was not possible in the data of Figs 3(a) and 4(a) when that data is regrouped as P/L 
in Figs 3(c) and 4(c) respectively, because in these cases differences in scale are getting very 
small. 
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Fig. 5. Comparison of experimental data presented by Rosenberg and Dekel [9] with predictions 
using the two versions of the model as shown by the heavier lines with L/D values indicated: (a) the 

mushrooming version and (b) the erosion version of the model. 

DISCUSSION 

It should be understood that we are carrying out computations on model problems. To the 
extent that the processes represented in the model problem describe in a correct mathemat-  
ical form physical phenomena in the real world, and if there is a reasonable concurrence of 
computational  results with experimental data, then the model is useful. The present 
computat ions demonstrate that the inclusion of terms accounting for both radial inertia 
effects and shear allow correct modelling of the effect of penetrator LID ratio on depth of 
penetration. The approach used also shows differences on the basis of scale and material 
which mirror experimental data. It is suggested that including these aspects of the physics of 
penetration into the modified hydrodynamic approach may allow that model to also 
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distinguish effects due to L/D ratio, scale and material. Because the influences of friction and 
radial inertia only occur at the projectile tip where deformation is occurring, and because of 
their dependence on the geometry of the deforming region, it may be required that the 
modified hydrodynamic model be formulated with the penetrator and target being seg- 
mented into elements as is done in the present approach. 

Both versions of the model bear similarities to the concepts put forward by Recht [23] 
which see penetration by deforming projectiles as a balance between projectile mushrooming 
and shear of displaced material, features which are clearly evident in sectioned penetrators 
[24]. The mushrooming version of the present model as originally formulated, Fig. l(a), 
assumes that the whole rod is carried forward, with shear in the penetrator and target 
occurring at the diameter of the interface element which can reach up to 3.2 times the original 
diameter before the element is removed as being ineffective. Whilst this appears to be 
reasonable for the prediction of depth of penetration at low velocities, where erosion is not 
generally observed in experimental impacts, it leads to an underestimate of depth of 
penetration, for high LID penetrators in particular, at high velocities above about 1000 ms 2. 
The assumption of continuous erosion so that the target is loaded and perforated at the 
diameter of the original penetrator, as in Fig. l(b), leads to an overestimate of the depth of 
penetration at velocities up to about 1500 ms- 1 for high L/D ratio penetrators. Clearly both 
models embody aspects that are realistic, but the appropriate model is somewhere between 
these extremes. 

A close examination of the comparisons of Figs 2 6 shows some disagreements between 
the model computations and experiment in addition to the differences in magnitude 
mentioned above. Most noticeable in Figs 5 and 6 are the slopes of the P/L vs velocity 
relations. The extent to which these differences are due to the approximations in one- 
dimensional modelling, or to approximate computational procedures, is uncertain. For the 
simpler problem of projectile mushrooming against a rigid wall, it has been demonstrated 
that in using a model which is segmented into elements, shear between elements as well as 
element compression is important, and the inclusion of a term to account for this would be 
expected to improve the present solution [25, 26]. The present solution methods would also 
be improved by using a variable time step which would allow a smaller minimum element 
height, by giving attention to the effect of element height, and also to the physics of erosion (if 
this is possible in a one-dimensional approach). The extent to which the material differences 
demonstrated in Fig. 6 are due to fortune or are a real reflection of the physics of penetration 
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is uncertain because the material model used is very approximate, particularly as far as failure 
and erosion are concerned. Nevertheless it reflects recent indications that material differences 
based on flow stress may explain the DU-tungsten alloy performance gap. The inclusion of 
thermal softening in the present model should be possible and would be expected to improve 
the concordance between model predictions and experiment. Differences between the model 
and experiment are not generally attributable to rate effects, because when this is simulated 
by modifying the constitutive parameters appropriately, the fit to experimental data is not 
radically improved. 

CONCLUSIONS 

Modelling of penetration using a one-dimensional model is used to demonstrate that 
including the effects of radial inertia and shear between the penetrator and the target allows 
correct modelling of LID effects, as well as the effects of penetrator scale and material. The 
two versions of the model used which assume penetrator mushrooming behaviour and 
penetrator erosion respectively, bound penetrator performance at high velocities and high 
LID ratios. Both models give reasonable predictions of penetrator behaviour for low LID 
ratio penetrators. 
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A P P E N D I X :  S O L U T I O N  M E T H O D  

The equations and solution method are set out below consistent with the notation used in earlier work [12] which 
described the mushrooming version of the model, and showing the modifications to the equations for the erosion 
version of the model. 

Referring to Fig. 1, the equtions of motion are: 

N i +  l . j  - N i , j  - Ti. j  - m l . j f f i , j  = 0 (Ala) 

Ni ,  j - NI 1,j + T,.j - mijffl, j = 0 (A I b) 

where Ni j  is the normal force on element i at time step j 

Ti.j is the shear force 

z/~,j is the acceleration 

and mi, j is the element mass. 

Equation (Ala) applies to the cylinder representing the projectile and Eqn (Alb) to the cylinder representing the 
target. Elements, i, are numbered starting from the non-impact end of the projectile. The element mass is constant for 
the mushrooming version of the model until it is deleted when its height is reduced by compression to one tenth the 
original value and it is considered no longer to be contributing to the problem, but continuously variable for the 
erosion version of the model. Thus 

m~,~ = rnl. o (A2a) 

mi. j = ml .oh i . j /h i .o  (A2b) 

where hij is the element height, 
apply to the mushrooming version of the model, Eqn (A2a), and to the erosion version of the model, Eqn (A2b), 
respectively. The zero subscript specifies the value of the element mass at the time of impact. 

The relationship between acceleration, if, and displacement, u, is 

ui. j+ 1 = f i i . j (6 t )  2 + 2ui , j  - ui . j  i (A3) 

where the time increment, fit, is given by 

6t  = t j+ i - t i .  (A4) 

Plastic deformation is treated using a constitutive equation of the form 

~r = aoe" (A5) 

where a is normal stress 
e is normal strain calculated as the natural logarithm of the current over the initial element height 

and constants ao and n are material specific and obtained from simple compression tests. Elastic unloading and 
re-loading to yield uses the relation 

a = eE + C (A6) 

where E is the material Young's modulus and the constant C is calculated at each step based on the last point of 
strain at plastic yield. 

To account for confinement the target flow stress is incremented by a factor 2.7, and with r denoting target and 
p denoting projectile, the actual normal stress to deform a target element is 

a v = 2.Ta0TCT (A7a) 
and for the projectile 

ap = aope"~ (A7b) 

or % = (70pe np -t- 1.7aor (A7c) 

where Eqn (A7b) applies for elements of the projectile which are not inside the target or which have a diameter less 
than the interface element diameter, and Eqn (A7c) applies for elements which are both inside the target and whose 
diameter also equals or exceeds the projectile interface element diameter. For the erosion model, as distinct from the 
mushrooming version, confinement, Eqn (A7c), is allowed for all projectile elements within the target which have 
deformed, and for all other projectile elements Eqn (A7b) is used. The inclusion of the increment due to target 
strength in Eqn (A7c) and the assumption of projectile interface element diameter defining the instantaneous target 
hole diameter, have been discussed at length elsewhere [12]. The depth of penetration is taken from the original 
target element interface position, and the target is made sufficiently thick that movement of the last element is 
negligible up to the time penetration ceases. 
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The increment in stress due to radial inertia, a r is calculated from the equations 

3 /D,V 
% i = ~ p p ~ . )  (ti~-fi i 1) 2 (ASa) 

3 [ D i 5  2 . 

where D~ is element diameter 
ti i is element velocity 
and ppand PT are material density for projectile and target respectively. 

Equation (A8a) refers to the projectile and Eqn (A8b) to the target. For the erosion version of the model, Di becomes 
D~, o, or the original element diameter, in Eqn (A8) because any material beyond this is eroded continuously. 

The shear force at the side of the element, T, is calculated from 

/r  

I Z,,jl = ~'~Di,jhi,j(r~ (A9a) 
,~/3 

I Ti.jl = - - D p  jh jaoT (A9b) 
, / 5  ' 

where D~.j is the element diameter 
Opl.j is the projectile interface element diameter. 

Equation (A9a) applies to a projectile element, under the same restrictions as confinement is included as per 
Eqn (A7c), and Eqn (A9b) applies to target elements. The sign of the shear force is governed by the direction of 
movement and a* is the lesser of aop and a0T. Equation (A9) apply for the mushrooming version of the model as they 
are, however for the erosion version the diameter terms become the intitial projectile diameter and a~ is always taken 
as equal to aop. 

The normal force on an element is the sum of a confined or an unconfined strength term, Eqn (A7), and the radial 
inertia term, Eqn. (AS). Thus 

Ni ,  j = [ai,j(l~, ) Jr 6ri , j]Ai ,  j (A10) 

where the material stress a~4 is a function of strain, ~, and A~4 is the element diameter, calculated by assuming 
constant volume deformation for the mushrooming version of the model, and using the initial projectile cross section 
area for the erosion version of the model. 

The problem is initiated with projectile elements moving with the initial velocity, %, and target elements 
stationary, except that the masses of the projectile and target interface elements are combined, as in Fig. 1, and given 
a velocity v, calculated by 

½(mor,+moT)VZ__ ~moprOl ,= (All)  

where the zero subscript again refers to the initial value. Initially forces are all zero so in the first time step Eqns (A 1 
and A3) can be used to calculate displacements, element strains, and velocities, and new element positions are logged. 
Then new stress and force values can be calculated with Eqns (A7-A 10). These values are substituted into (A 1) and 
the cycle repeated. The forces at the ends of the projectile and target away from impact remain zero throughout. If an 
element is eroded a form of Eqn (A 11) defines the new interface velocity. The calculations involve repetitions of this 
cycle and the remainder of the computer program is concerned with updating and logging parameters. The 
calculation is stopped when the projectile velocity drops below a specified level (say 10 ms 1 for a practical ballistic 
impact), or when the projectile is completely eroded. 


