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Summary - As ballistic tests are often performed in reduced geometrical scale, the scaling laws are 
important for the interpretation of the results. In this study, we tested the validity of replica scaling, by 
which we mean that all geometrical dimensions are scaled uniformly, while the materials and the 
impact velocity are kept the same. Long tungsten projectiles with length-to-diameter ratio 15 were 
fired against unconfined alumina targets with steel backing. The tests were carried out with impact 
velocities 1500 m s i and 2500 m s ~, and in three different scales with projectile lengths 30, 75 and 
150 mm (diameters 2, 5 and 10 mm). The alumina targets were photographed by means of a high-speed 
camera, and l he tungsten projectiles were photographed inside the alumina targets by means of flash 
radiography. Also, the residual penetrations in the steel backings were measured. The Johnson 
Holmquist model for ceramic materials was implemented into the AUTODYN code, which was used 
for simulation of the experiments. The agreement between results of experiment and simulation was 
fair, and over the tested interval of scales replica scaling was found to be valid with reasonable 
accuracy. 
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N O T A T I O N  

A, B, C,m, n, T,,, T o constitutive parameters [Johnson ('ook) 
C, specific heat 
D diameter 
E Young's modulus 
G shear modulus 
H hardening modulus 
K k fracture toughness 
L length 
P parameter vector 
P penetration 
t time 
T temperature 
r impact velocity 
c r plastic strain 
~?' plastic strain rate 
i:o strain rate threshold 
), length scale factor (model to prototype) 
o yield limit 
p density 

Subscripts 

b steel backing 
f final 
i initial 
p tungsten projectile 
t alumina target 

Superscript 

* reference quantity 

I N T R O D U C T I O N  

P e n e t r a t i o n  o f t u n g s t e n  p r o j e c t i l e s  w i t h  l a r g e  l e n g t h - t o - d i a m e t e r  r a t i o  i n t o  t a r g e t s  o f  v a r i o u s  

m a t e r i a l s  (e.g. s tee l ,  c e r a m i c s )  h a s  b e e n  s t u d i e d  e x t e n s i v e l y .  R e f e r e n c e  [ 1 ]  g ives ,  a m o n g  o t h e r  
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things, a general description of the penetration process in semi-infinite steel targets and 
a summary of experimental results (e.g. influence of impact velocity, target hardness etc.). The 
mechanisms involved when a projectile penetrates a thick ceramic target (steel-encased) are 
described by Shockey et al. [2]. 

Most of the penetration experiments are performed in reduced scale in order to simplify 
handling and decrease costs. Scaling laws are therefore essential for translation of results 
from tests to full scale. Usually, replica scaling is used, by which we mean that the geometrical 
dimensions are scaled uniformly, while the materials and the impact velocity are kept the 
same. There may be several reasons for lack of scaling which are of a practical nature. One 
may be that some geometrical details in full scale are not properly considered. Another may 
be that the material properties are size-dependent due to the manufacturing process. A more 
fundamental reason may be that some dimensionless parameters (pi terms) containing 
material properties, such as fracture toughness and strain rate sensitivity, do not remain 
constant in replica scaling. 

The validity of replica scaling in penetration mechanics has been subjected to several 
studies. For example Magness and Leonard [3] reported improved projectile performance 
with increased scale when depleted uranium and tungsten projectiles penetrate different steel 
targets. On the other hand, Holmberg et al. [4] studied replica scaling for tungsten projectiles 
which penetrate oblique steel plates and found no influence of scale. 

In this paper we are concerned with the penetration of long rod projectiles into ceramic 
targets. We have chosen to study the validity of replica scaling for a simple target geometry 
which allows proper scaling of all geometrical dimensions. Thus, the targets were unconfined 
alumina cylinders with cylindrical steel backings, and the tests were carried out in three 
different scales for two impact velocities. 

For simulation of the tests, we implemented the Johnson Holmquist constitutive model 
[5] into the AUTODYN code and treated the alumina as strain-rate independent. Therefore 
effects of strain-rate were not simulated, as they were in [6]. 

EXPERIMENTS 

The impact tests were carried out by firing flat-ended cylindrical tungsten projectiles with 
lengths 30, 75 and 150ram and length-to-diameter ratio 15 (diameters 2, 5 and 10mm) at 
1500 m s 1 and 2500 m s- 1 into replica-scaled targets. The projectiles were launched with 
a two-stage light-gas gun. They were accelerated using a pushing sabot (with a pusher plate 
made of titanium), except in the 150 mm projectile tests at 2500 m s 1, where a pulling sabot 
was used. In the latter case, three quarters of the projectile length was threaded (M10 x 1). 
The sabot was separated aerodynamically from the projectile, and the pieces were caught by 
a trap consisting of a vertical armour plate with a central hole. For the experiments at 
2500ms 1 with a pushing sabot, two armour plates were needed to catch the pusher plate. 
The target set-ups were free and lying on a V -profile about three meters from the muzzle of 
the gun. Each target set-up consisted of an alumina cylinder (referred to as target), glued with 
Araldite D (Ciba Geigy) on a steel cylinder (referred to as backing), both with circular 
cross-sections. The length of the alumina target was chosen so that at least one third of the 
total penetration would occur in the steel backing. The designs of the targets, backings and 
projectiles are shown in Fig. 1. 

The projectiles were made from a sintered tungsten alloy (DX 2 H CMF  from Pechiney). 
The alumina targets (99.7% AlzO3-powder from Vereinigte Aluminiumwerke) were pro- 
duced by If6 Ceramics by CIP-processing (density 3809kgm 3 with standard deviation 
16kgm -3, sound speed 10.02kms 1 with standard deviation 0.14kms-~). The backing 
material was a steel for hardening and tempering (SIS 2541-03} with a Vickers hardness of 317 
HV 0.1 (standard deviation 15 HV 0.1). Photographs of the alumina targets and tungsten 
projectiles for the 1500m s ~ experiments are shown in Fig. 2. 

Three 150 kV X-ray flashes in front of the sabot catcher plates were used to determine the 
velocity and the orientation of the tungsten projectile (two from above and one from the side), 
The angle of attack at impact was estimated by linear extrapolation. 
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Fig. 1. Steel backing and alumina target (shaded) for (a) 1500m s ~ and (b) 2500m s 1. (c) Tungsten 
projectile. Dimensions are given in terms of the projectile diameter. 

Fig. 2. Alumina targets and tungsten projectiles for 1500m s ~ tests. 

In all tests at 1500 m s 1, and for the 75 mm length projectiles at 2500 m s t, the position of 
the projectile tip during penetrat ion was determined from shadowgraphs  obtained using 
flash radiography.  A 1.2 MV X-ray flash was used except in the smallest-scale tests, where 
a 150 kV X-ray flash was used. The exposures were made when the projectile had penetrated 
approximately half the length of the alumina target. 

An Imacon  790 high-speed camera and a measuring microscope were generally used in 
order to determine the expansion of the front end of the alumina target during the 
penetration process. A square grid was painted on the target and a paper sheet with parallel 
vertical lines was used as a background  reference, as shown in Fig. 3. Eight pictures (Kodak 
Tri-X film) were taken with 4.88 gs interval and 1 ~as exposure time. I l lumination was 
provided by an Imacon  20/50 xenon flash. Triggering of the X-ray flashes, the Imacon  camera 
and the xenon flash was achieved with a pulse from a copper  grid mounted  on the front of the 
alumina target. 

In one case (150 mm projectile at 2500 m s 1), two 150 kV X-ray pictures were used instead 
of the Imacon  pictures. The Imacon  and X-ray pictures taken during the penetrat ion were 
also used for an extra control  of the angle of at tack of the projectile. 

After the experiments, an axial slice of each backing cylinder, containing a complete crater. 
was cut out. Then the final penetrat ion in the steel backing was determined from X-ray 
shadowgraphs.  
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Fig. 3, Experimental set-up seen from the position of the lmacon camera. ( 1 ) Sabot catcher, (2) target 
with background, (3) opening for the 1.2 MV X-ray, and (4) film holder. 

S IMULATIONS 

A U T O D Y N  [7, 8] was used for simulation of the penetration process. This is a coupled 
(Euler-Lagrange, ALE) finite difference code for transient continuum-dynamical problems. 
However, the simulations were purely Lagrangian. Also, they were two-dimensional with 
cylindrical symmetry. 

The two geometries shown in Fig. ! for 1500m s -~ and 2500m s-  ~ were studied with the 
projectile length 75 mm in both cases. The grid for the case of 1500m s 1 was set up as 
follows: the tungsten projectile was divided into 150 x 5 square zones with size 0.5 ram. The 
grid in the alumina target consisted of 80 zones in the axial direction and 30 in the radial 
direction. The zone size was constant in the axial direction but increased as a geometric 
progression (3.30% per zone) in the radial direction. At the axis of symmetry, the zones were 
quadratic with size 0.5 ram. In the steel backing the grid consisted of 78 zones axially and 30 
zones radially. The zone size increased geometrically in the radial direction (4.64% per zone) 
and in the axial direction (l,15% per zonet away from the impact interface. The zone at the 
axis adjacent to the alumina target was quadratic with size 0.8ram. For the case of 
2500m s- 1, the number of zones in the axial direction in the alumina target was doubled to 
160 so that the zone sizes were kept the same as for the case of 1500 m s- 1. In the steel backing 
the number of zones in the axial direction was increased to 100 in order to keep the zone sizes 
close to the alumina target and the geometric progression rate (1.16% per zone) the same as 
for the case of 1500 m s - 1. 

For tungsten and steel we used the Johnson Cook constitutive model [9] which gives the 
yield limit as 

(1) 

where e v is the effective plastic strain, ~P is the plastic strain rate, and T is the temperature. The 
logarithmic term in Eqn (1) should be set to zero if~Y is less than the threshold ~,o for strain rate 
effects. This threshold was taken as 1.0 s-1. For alumina we used the Johnson-Holmquist  
constitutive model [5], which is commonly used and easy to implement. We implemented it 
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by using the AUTODYN user subroutine interface. In Appendix A we have included a brief 
description of the model and a discussion of the damage growth law. Data for tungsten, steel 
and alumina used in the simulations are given in Appendix B. 

Frictionless boundary conditions were used at interfaces between any combination of the 
projectile, target and backing materials. Large deformations in the penetration process were 
handled with the so-called erosion, available in AUTODYN. See [10] for this technique. 
Zones were considered eroded when the accumulated strain exceeded an erosion strain which 
is equal to 2.5 for tungsten and steel, and 2.0 for alumina. The erosion strains were set to such 
high values in order that failure (in the physical sense) should occur before erosion. Too high 
erosion strains would cause problems due to heavily distorted zones. In [10] values between 
1 and 2 are recommended. 

DIMENSIONAL CONSIDERATIONS 

The geometries of tungsten projectile, alumina target and steel backing, see Fig. 1, are 
specified by six parameters, viz. the length and diameter of the projectile (Lp, Dp), of the 
alumina target (Lt, Dr), and of the backing (Lb, Oh). The three materials are characterized by 
their densities p and by parameters that represent their constitutive behaviours and 
strengths. Thus, there are parameters with dimension of stress such as the Young's moduli E, 
the shear moduli G, the static yield limits a, and the hardening moduli H. For tungsten and 
steel, represented by the Johnson-Cook constitutive model, there is also the threshold 
strain-rate go for the on-set of strain rate effects, and in addition some dimensionless 
constants. As mechanical energy is converted into heat by plastic work, the specific heats C,, 
should also be involved. The fracture toughness K k is probably of some importance, 
especially for alumina, even if it does not appear explicitly in the computational model. These 
parameters are summarized in Table 1. 

Table 1. Parameters characterizing projectile (p), target (t) and backing (b) 

Quantity Unit Parameter 

Lengths m Lp, L, L b 

Diameters m Dp, D t. D b 

Densities kgm- 3 Pp, P, Ph 

Young's moduli Pa Ep, Et. E b 

Shear moduli Pa Gp, G, G b 

Static yield limits Pa %, % % 

Hardening moduli Pa H~,, H ,  H b 

Strain rate thresholds s-~ " " " ~;Op' ~[~(It~ ~;Ob 

Fracture toughnesses Pare ~ K~ep, Klct, Kit b 

Specific heats Jkg- IK- 1 Cvp, Cv, Cvu 

Impact velocity ms- a t,p 

Temperatures K T v = T~ = T b 



408 P. Lundberg et al. 

In order to establish dimensionless parameters we normalize all lengths, velocities and 
densities with respect to those of the projectile (Lp, vp, pp, respectively). All other reference 
quantities can be expressed in terms of Lp, %, pp and the temperature of the projectile Tp (see 
Table 2). In [6], dimensional analysis was carried out for a similar problem. 

From the experiments we determined the penetration P and the diameter of the alumina 
target D, vs time. For penetration, one value was determined from flash radiography in 
addition to the initialpenetration Pi = 0 (at time t = 0) and the final penetration Pf. Provided 
that Table 1 contains all the relevant parameters of the problem, the response functions can 
now be expressed in dimensionless form as 

(2) 

where 

Lt Lb Do Dt Db. Pt Pb. Ep E t Eb  G o G t G b o'p a t O'b. Hp,Ht,Hb, 
V = \ -L ; '~ ;  L*'L* 'L*' a*'p*' a*'a*'a*' a*'a*' a*; a*'a*'a*' ~ ~ -~" 

~ 0 p  ~0t ~0b. Klcp Kict Klcb Cv v Cvt Cvb~ 
~=-;"2g'5----~' ' ' - - '  , '  , ' W g  e e ~ K~ K* K * '  C~ C~ C~,/ 

(3) 

is a parameter vector. The vector elements consist of the parameters listed in Table 1 (except 
Lp, pp, t)p, Tp) divided by the corresponding reference quantities from Table 2. 

By the scale factor for a quantity X we mean the ratio of the corresponding reference 
quantity X* of the model to that of the prototype. Thus, if the scale factor for length 
is denoted by 2, the replica scale factors will be those shown in Table 2. It follows that 
every dimensionless element of the parameter vector P in Eqn (3) will be the same for 
the model and the prototype except those which involve the strain rate thresholds eo and 
the fracture toughnesses K~c. Therefore, replica scaling can be expected to be valid only 

Table 2. Reference quantities and replica scale factors 

Quantity Unit Reference quantity Replica scale factor 
(X*) (X,,od0~/X ro,o,yp°) 

Length m L* = L~, 2 

Velocity ms ~ v*= Vp 1 

Density kgm - 3 P* = PO 1 

Time s t* = Lp/up 2 

Stress Pa o-* = pp(Up) 2 1 

Strain rate s- 1 ~* = vo/'L p 2- 

Fracture toughness Pam llz K 1 - -  / ) p ( U p ) Z ( L P  ) 1 / 2  21/2 

Specific heat Jkg- 1K - 1 C* = vZv/T p 1 
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if strain rate thresholds and fracture toughnesses have negligible influence on the penetration 
process. 

Next, we will present the experimental results for normalized penetration P/L* and 
diameter Dr~L* vs normalized time t/t*. Results for different scales are expected to fall on the 
same curve, if replica scaling is valid. According to our considerations here, deviations from 
such behaviour would be due to improper scaling of strain rate and fracture toughness (the 
corresponding dimensionless elements of P are not the same for the model and the 
prototype). However, such scale effects could also be caused by other parameters which have 
been overlooked in Table 1. 

RESULTS 

Results obtained from the experiments together with corresponding predictions from 
the computer simulations are shown in Figs 4-8. Figure 4(a) shows an example of a 
flash X-ray picture of the tungsten projectile during penetration into the alumina target, 
and Fig. 4(b) shows the corresponding simulated result. From both kinds of results the 
radial expansion of the alumina target can be observed. For each test, the X-ray picture 
gives the penetration at one particular time. Such results from eight tests are summarized in 
Fig. 5. 

Figure 6 shows a typical sequence of Imacon pictures from the same test as in Fig. 4(a). The 
radial expansion vs time for the front end of the alumina targets is plotted in dimensionless 
form in Fig. 7. In Fig. 8 the normalized final penetration (including the penetration in the steel 
backing) is plotted versus the length scale represented by the projectile length. The two bars 
to the right of the diagram represent the alumina target and the steel backing in the same 
scale as that used in the penetration diagram. 

The solid and dashed curves in Figs 5, 7 and 8 represent results of the numerical 
simulations at 1500 ms-  ~ and 2500 ms-  1, respectively. 

Some data from the tests are given in Table 3. 

DISCUSSION 

We have investigated the validity of replica scaling which means that the geometrical 
dimensions are scaled uniformly but velocities and materials are kept the same. For two 
impact velocities (1500 m s- 1, 2500 m s- 1) the length scale was varied by a factor of five with 
projectile lengths equal to 30, 75 and 150mm. The average impact velocities in the two 
groups of experiments were 1495 m s- 1 (standard deviation 55 m s- 1) and 2490 m s 1 (stan- 
dard deviation 40 ms-  1), respectively. The angle of attack of the rods at impact was generally 
less than 1.5 ° and never more than 3 ° . It was not attempted to compensate the results for the 
scatter in impact velocity and angle of attack shown in Table 3, besides from using 
a dimensionless time, the normalization of which depends on impact velocity. One reason is 
that the scatter in these quantities is relatively unimportant. Another is that we see no 
unquestionable way to make such a compensation on the basis of two tests only at each scale 
and nominal impact velocity. 

In Fig. 5, the results for P/L* vs t/t* from the six tests at 1500 m s- 1 seem to fall on a single 
curve, which supports the validity of replica scaling. The numerical simulations show 
approximately linear dependences of P/L* on t/t*, i.e. approximately constant penetration 
velocities. The experimental points at both 1500 m s- a and 2500 m s- a are slightly above the 
predicted curves. 

The results for Dr~L* vs t/t* of the front end of the alumina target in Fig. 7 tend to fall on 
one curve for 1500ms-1 and on a slightly lower curve for 2500ms-1. These results again 
support the validity of replica scaling. The agreement with simulation is good at the 
beginning of the expansion but not at later times. Comparing the diagrams of Figs 5 and 7, we 
can estimate that the latest points in the latter diagram correspond to times when the 
projectile should have penetrated well into the backing. 
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(a) 

(b) 

Fig. 4. (a) Radiograph 26.15~ts after the impact of a 75mm projectile on an alumina target at 
1490ms t. (b) Plot from simulation of the same case with impact velocity at the nominal value 
1500m s 1. The plot is made at 25.98 ~ts which corresponds to the same dimensionless time as in the 

radiograph. The shaded areas in the alumina target illustrate the level of damage. 

According to the replica scaling laws, the normalized final penetrat ion Pf/L* for the same 
velocity should be the same for all length scales L* in Fig. 8. This seems to hold with fairly 
good approximation,  regardless of the slight scatter in impact  velocity and angle of attack. 
Possibly, there is a slight increase in final penetrat ion depth Pf/L* with length scale L* [3]. 
Linear regression suggests 3.5% and 2.4% increase in Pf/L* as scale changes by a factor of  
two at 1500 m s - 1  and 2500 m s - l ,  respectively. The computed  final penetrat ion agrees well 
with the measured ones at the lower impact  velocity, but the simulation underestimates the 
final penetrat ion at the higher impact  velocity. 
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Fig. 5. Measured and computed penetration P/L* vs time t/t* for 30, 75 and 150 mm projectiles at 
1500m s 1 (open symbols) and for 75 mm projectiles at 2500 m s ~ (filled symbols). The computed 
penetration histories are shown as solid ( | 5 0 0 m s  1) and dashed (2500ms 1) curves• The alumina 

(shaded) targets and steel backings are represented by vertical bars. 

411 

Fig. 6. Imacon pictures of alumina targets from the same test as in Fig. 4(a). The first picture was 
taken 3.35 tas after impact, and the rest of the pictures with 4.88 gs time interval. The bottom and top 

rows show pictures 1,3, 5, 7. and 2, 4, 6, 8 respectively• 

As our intention was not to mode l  scale effects, we used a strain-rate independent mode l  
for the alumina and performed the s imulat ions  for only one geometrical  scale. However ,  the 
models  for the tungsten and steel are strain-rate dependent  [9] ,  from which it fo l lows that the 
computat iona l  mode l  is not  perfectly invariant under replica scaling. In order to est imate 
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Fig. 7. Measured and computed diameter Dr~L* (and D,/Dti, where Dtl is the initial diameter) of front 
end of alumina targets vs time t/t* for 30, 75 and 150 m m  projectiles at 1500 m s-  ~ (open symbols) and 
2500m s-~ (filled symbols). The computed diameters are shown as solid (1500 m s 1) and dashed 

(2500ms 1) curves. 

2.0 

1.5 

1.o 

0.5 

• • 

V 

0 . 0  J i 

0 50 100 

L ° 

r ~  

 1500 ms1 • 
• 2500 ms 1 ~ 

I 

150 200 1500 ms ~ 2500 ms q 

Fig. 8. Measured and computed final penetration depth Pf/L* vs length scale L* for 30, 75 and 
150ram projectiles at 1500ms-1  (open symbols) and 2500ms-~  (filled symbols). The computed 

depths are shown as solid (1500 m s 1) and dashed (2500 m s -  ') curves. 

the influence of strain-rate, we repeated the simulations with the strain-rate constant C -- 0 in 
the Johnson-Cook  model. We found that the influence on the normalized penetration, 
shown in Figs 5 and 8, was less than 0.012, and that the influence on normalized diameter of 
the alumina target, shown in Fig. 7, was less than 0.04. 

We conclude that the laws of replica-scaling hold with sufficient degree of accuracy to 
justify scaled-down experiments with long tungsten projectiles penetrating unconfined 
steel-backed alumina targets. Possibly there is a tendency for normalized penetration to 
increase slightly with scale. Such deviation from replica-scaling could partly be explained by 
the influences of strain-rate and fracture toughness [6]. 
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Table 3. Data from the tests 
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Test ID D o Lp vp Angle of attack D~ L, Pf 
(mm) (mm) (ms- l) (~) (mm) (mm) (mm) 

141 2 30 1417 17 20 16.1 25.1 

142 2 30 1582 2.3 20 15.9 28.3 

132 2 30 2409 < 1.5 20 32.0 47.6 

134 2 30 2475 < 1.5 20 32.0 45.4 

150 5 75 1488 <1.5 50 40.1 71.4 

151 5 75 1503 3.0 50 40.0 70.3 

152 5 75 2505 < 1.5 50 79.9 119.6 

153 5 75 2521 < 1.5 50 80.2 119.7 

157 10 150 1502 < 1,5 100 80.1 145.3 

158 10 150 1471 < 1.5 100 80.4 143.3 

1009 10 150 2505 2.4 100 161.0 249.0 

1010 10 150 2485 1.7 100 160.3 243.0 
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A P P E N D I X  A: T H E  J O H N S O N  H O L M Q U I S T  M O D E L  

In the Johnson Holmquist  model [5] the ceramic has a yield stress that decreases with increasing damage. The 
damage is described by a parameter D which increases gradually from zero to one as the material is damaged. In 
non-dimensional form the yield stress is given by 

o' =(1 -D)o- '  i +Do ' f ,  (AI) 

where o'~ is the normalized yield stress for the intact material (D = 0) and o'f is that for the fully damaged material 
(D = 1). The non-dimensional stresses are normalized according to o' = O/Om~L, O I = O~/aHE L and o'f = or/o-nH ~ where 
OHEL is the effective stress at the Hugoniot  Elastic Limit (HEL). The normalized yield stresses for the intact and fully 
damaged materials depend on the pressure p according to 

o I = A(p' + O'hyd ) N, O I -- B(p') 'u. (A2) 

respectively, where A, B, N, M, and oi, yd are dimensionless constants. The variable p' is the normalized pressure 
defined by p' = P/PHEL, where PHEL is the hydrostatic pressure at the HEL. The quantity Ohy d iS the maximal mean 
stress which the material can withstand (Ohy d = ,'rhy.:l/pl~FL). It is understood that a I = 0 when p' < a~ya, and o r = 0 
when p' < 0. There is also a possibility to limit the yield stress for the fractured material with a dimensionless 
parameter Sfma~ SO that o'f ~ Sfm,~. The Johnson Holmquist  model includes strain rate effects by multiplying the 
right members of both Eqns (A2) by the factor (1 + C ln(i/i0)), where C and ~?o are constants and ~ is the strain rate. In 
our simulations we do not consider strain rate effects in the ceramic, and therefore the equations have been simplified 
accordingly. 

The increase of the damage parameter D over a time step is proportional to the plastic strain increment A~: p with 
a pressure-dependent proportionality factor. We let the damage accumulate according to 

/Xe r 
D = Z  (A3) 

1 
e~' + ~ ( o ~  o r) 

where 

cP = Dl(  p' + O'hyd) °~, (A4) 

and D l and D 2 are given constants. The term (a~ - oO/3G in the denominator  of Eqn (A3) is not present in [5]. It has 
the effect of reducing the rate of damage growth, and it is derived from the observation that Eqn (A3) is equivalent to 
the damage evolution law 

i} p [}d 
b = (a5) 

where 

id = _ _ _ _ _ 1  ~ a b = O i - - O ~ b  (A6) 
3G~?D 3G 

which can be seen by eliminating ~d from Eqns (A5) and (A6). In Eqn (A5) the plastic strain which drives the damage 
evolution is reduced by the plastic strain that is directly caused by the softening due to damage. For our 
implementation in A U T O D Y N  we obtain better agreement with the test examples in [5] with our modified damage 
evolution law than with the original one, possibly due to different definitions of plastic strain in the respective codes. 

Except for an extra term Ap, which represents the so-called dilatancy, the equation of state is a simple 
energy-independent pressure volume relationship 

p = Kll~ + Kzt~ 2 + K3# "~ + Ap (A7) 

for # = (p/p0) - 1 ~> 0. For/~ < 0 the second and third degree terms are omitted, and the pressure is restricted (on the 
tensile side) to p/> - (1 - D) Ohyd. 

The last term Ap in Eqn (A7) is zero for undamaged material and increases slowly as damage is accumulate& It is 
determined from an energy consideration. The portion of the decrease of the elastic deviatoric energy which is due 
only to increase of damage over a time step is 

1 
•U = g-dt[a(p ...... 0,)] 2 - [o(p . . . . .  D . . . .  )]2), (AS) 

where a(p, D) is the yield stress as a function of pressure and damage inferred from Eqns (A 1) and (A2). Assuming that 
the fraction/~ of this energy AU is converted to potential hydrostatic energy one can derive [5] the approximate 
expression 

Ap,+a, = - K11~,, A, + ~/(K1P,*At + AP,) z + 2[~KI A U  (A9) 

for the value of Ap at the time t + At. 
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A P P E N D I X  B: M A T E R I A L  D A T A  U S E D  I N  T H E  S I M U L A T I O N S  

Data for tungsten and steel are listed in Table B 1. In [9] data are given for several materials, and we used "tungsten 
alloy (0.07% Ni, 0.03% Fe)" and "4340 steel". We changed the density for tungsten to a value appropriate for our 
material (in the reference the density is 17000 kgm 3). For tungsten we used an equation of state of Mie-Griineisen 
type and data for pure tungsten from [1 lJ. The equation of state for steel was a simple energy-independent linear 
elastic law, based only on a bulk modulus. 

For alumina we used the Johnson-Holmquist  model with the data lasted in Table B2. The elastic moduli K and 
G are deduced from Poissons ratio, usually reported to be around 0.22, and the measured density, and longitudinal 
sound speed. Our data are consistent with the longitudinal sound speed c L = [(K + (4/3)G)/p] 1/2 = 10.0km s 
Young's modulus E = 9KG/(3K + G) = 331 GPa, and Poisson's ratio v = (3K -2G)/ (6K + 2G) = 0.224. The com- 
pressive strength for the type of alumina used in the experiments has been measured with split Hopkinson pressure 
bar technique [12] to acomp = 3.8 GPa. For the compressive axial stress at the Hugoniot Elastic Limit we used the 
value HEL = 8.3 GPa valid for a similar alumina quality (AD-99.5) [137. From these values and the tensile strength, 
which we estimate to be ato,s = aoomp/10 = 0.38 GPa, the yield strength curve for the intact material, the first of Eqns 
(A2), can be determined in the following way. With the assumption that the material responds linearly up to the 
HEL-point, the three values a~EL, PHEe, and HEL are proportional to 2G, K, and K + (4/3)G respectively, i.e. 
aHEL:PnFL:HEL = 270:200:380. Therefore aHEL and PnEI, used as normalizing quantities in the model, can be 
determined from HEL = 8.3 GPa to aHEL = (270/380) 8.3 = 5.90 G Pa, PttEL = (200/380)8.3 = 4.37 GPa, cf. Table B2. 
The normalized pressure and yield stress for the intact material satisfy p' = o-'~ = 1 at H E L. The first of Eqns (A2) then 
gives 

A(ahy d + 1) x = 1. (BI) 

Table  B1. Mate r ia l  cons t an t s  for tungs ten  and  steel used in the s imula t ions  

Q u a n t i t y  Un i t  P a r a m e t e r  Tungs t en  Steel 

Dens i ty  k g m  ~ Po 17600 7830 

Bulk m o d u l u s  G P a  K 159 

Bulk s o u n d  speed m s -  1 Co 4029 

Slope  in the  U ~ - U p  d i ag ram s 1.237 

Gr i ine isen  coefficient Y 1.54 

Shear  m odu lus  G P a  G 160 81.8 

Static yield limit G P a  A 1.506 0.792 

Stra in  h a r d e n i n g  m o d u l u s  G P a  B 0.177 0.51 

Stra in  h a r d e n i n g  e x p o n e n t  n 0.12 0.26 

Coeff. of  s t ra in rate C 0.016 0.014 

Stra in  rate  t h re sho ld  s 1 ~o 1.0 1.0 

T he r m a l  sof ten ing  e x p o n e n t  m 1.0 1.03 

Reference  t e m p e r a t u r e  K T o 300 300 

Specific hea t  J k g -  a K - a C, 134 477 

Mel t ing  t e m p e r a t u r e  K T m 1723 1793 
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Table B2. Material constants for alumina used in the simulations 

Quanti ty Unit  Parameter  Alumina 

Density k g m -  3 

Bulk modulus G P a  

Coeff. for 2'nd degree term G P a  

Coeff. for Yrd degree term G P a  

Shear modulus G P a  

Effective stress at HEL G P a  

Pressure at H E L  G P a  

Axial stress at HEL GPa  

Dimensionless constants: 

Po 3800 

K = K1 200 

K 2 0.0 

K 3 0.0 

G 135 

O-HE L 5.9 

PnEL 4.37 

HEL 8.3 

A 0.989 

B 0.77 

N 0.3755 

M 1.0 

Sfmax 0.5 

a'hy d 0.029 

D 1 0.01 

D 2 1.0 

/~ 1.0 

In the case of uniaxial stress the mean stress is equal to one third of the axial stress. Therefore *oomp and O~tens (both 
considered as positive numbers) satisfy 

(°"yd + ;p .Er )  N acomp = A . . . .  p (B2)  
(THE L 

Gtcn s Gten s N 

Because of the steep gradient of the yield strength curve for negative pressures, and the relatively rough estimate of 
the tensile strength, it is sufficient to set a~ya = atens/(3PHEL) = 0.029 in order to satisfy Eqn (B3) approximatively. The 
constants A and N are then determined from Eqns (B1) and (B2), which become linear in logarithmic form. 


