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Summary This paper presents the results of a combined experimental, numerical, and analytical 
investigation of a low-speed (198m/s) oblique impact of a cylindrical steel projectile into an 
aluminum-brass composite fuze simulant. The numerical simulations were performed prior to the 
experiments using the Lagrangian hydrocode EPIC92. The results indicate that projectile hardness 
and impact point strongly influence the mechanism by which the fuze deforms. An experiment was 
then conducted in order to evaluate the predictive capabilities of the hydrocode. The experimental 
results generally corroborate the hydrocode results during the initial stages of the impact but depart 
significantly at later stages of the penetration. Possible causes for the observed differences between the 
experiment and the simulation include, (i) the absence of a global fracture modeling capability in the 
hydrocode, and (ii) boundary condition differences between experiment and simulation. The hydro- 
code predicts that 91% of the projectile kinetic energy is converted into target plastic work. This result 
compares well with predictions based upon an analytical model of an elastic plastic beam bent by an 
end load. 
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NOTATION 

Johnson-Cook constitutive model constants 
EPIC damage parameter 
Johnson Cook fracture model constants 
beam area increment 
elastic modulus tensor 
Young's modulus 
limit of elastic behavior (Fig. 12b) 
beam diameter, tapered beam diameter at tip and built-in end 
beam moment of inertia 
beam length 
beam moment, yield moment, plastic moment 
load, load at initial yield (Fig. 12al 
homologous temperature 
dimensionless strain energy, complementary energy, total energy 
elastic beam deflection, maximum elastic tip deflection 
beam axial coordinate, limit of elastic behavior 
beam coordinate (Fig. 12b) 
beam tip deflection, tip deflection at initial yield 
incremental stress, strain and plastic strain tensors 
strain rate, normalization strain rate, dimensionless plastic strain rate 
fracture strain, equivalent plastic strain, incremental equivalent plastic 
strain 
beam curvature, beam curvature at initial yield 
beam stress, maximum yield stress, equivalent stress, pressure stress ratio 
mean normal stress, max. beam stress, max. bending stress, deviatoric stress 

1. INTRODUCTION 

There are a number of munition-related problems of interest to the defense community in 
which the presence of energetic materials is integral. One such area of investigation is that of 
explosive ordnance disposal (EOD) render-safe procedures, in which a potentially armed and 
thus dangerous fuze is disabled in situ, in order to render it safe for subsequent handling and 
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removal. One class of render-safe methods might be termed "mechanical", in that it relies on 
a measured use of mechanical force to sever or disrupt the explosive initiation train within the 
fuze. 

One such mechanical technique to render a fuze safe is to impact it with a hardened 
projectile at an oblique angle, for example, perpendicular to the fuze's axis of symmetry. With 
the proper selection of impact location and speed, the mechanical damage induced by the 
impact can be made sufficiently brisant to isolate the high explosive primer material from 
subsequent stages of the high explosive train. However, the impact should not shock the fuze 
to an extent which causes the explosive material to initiate. The EOD community currently 
employs this mechanical method in certain render-safe procedures. 

The physical process of rendering a fuze safe in s i tu  can be quite hazardous. In addition, 
certain types of foreign-made ordnance are of limited supply, and not available for paramet- 
ric testing. For these reasons, it is recognized that numerical simulation may assist in the 
development of render-safe procedures. To this end, this paper reports an investigation into 
the suitability of employing the EPIC92 hydrocode in the modeling of an oblique fuze 
impact, a mechanical render-safe procedure. The corresponding experiment was performed 
after the simulation work was completed, to provide a direct comparison for the simulation 
results. Another advantage of conducting the numerical analyses prior to the impact 
experiment is in determining the best time to radiograph the fuze. Upon introducing the 
specifics of the idealized problem to be studied, the problem geometry, constitutive proper- 
ties and boundary conditions of the problem are described. The results of finite element 
numerical simulations and experiment are presented and compared. Finally, an elastic 
plastic analytical solution is developed, which sheds insight into fuze render-safe mechanics, 
and is compared with the hydrocode results. 

2. PROBLEM DESCRIPTION 

The current work focuses on investigating the "structural" damage (i.e. the mechanical 
response) imparted to an inert fuze simulant as a result of an oblique impact, rather than 
establishing the impact conditions that are necessary to render-safe an actual fuze device. 

Fig. 1. Cutaway view of a typical fuze, illustrating internal components. 
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Fig. 2. Fuze and projectile boundary conditions (dimensions in meters). 

Only after a proper understanding of the mechanical response is obtained may future work 
address the complete fuze render-safe problem by replacing the inert components of the fuze 
simulant with an explosive material. Hereafter, the fuze simulant will simply be referred to as 
the fuze. 

A typical fuze geometry consists of a right-circular cone that threads into the ordnance at 
its base (Fig. 1). The cutaway view also illustrates some of the important internal fuze 
components such as the firing pin, detonator and booster. Although these components are 
critical for proper operation of the fuze under normal impact conditions, replacing the "fine" 
internal structure of the fuze with a homogeneous core material will simplify the oblique 
impact problem. 

The fuze selected for analysis comprises an axially symmetric 6061-T6 aluminum sheath 
surrounding a softer brass core. The aluminum sheath is 2.40 in. (61.0 ram) in diameter at the 
base, and tapers bilinearly from base to apex. The fuze height is 3.72in. (94.5 mm). The 
projectile consists of a solid, hard steel, right circular cylinder, 1 in. (25.4 mm) in diameter and 
3 in. (76.2 mm) long, with a mass of 300 g. It is designed to strike the fuze normal to its axis of 
symmetry during standard render-safe procedures. The initial configuration as modeled, is 
shown in Fig. 2, including a typical hit location and impact velocity. The specific engagement 
configurations for the three numerical simulations and single experiment were provided by 
Patel and Gold [1] (see Sections 3.2 and 5). 

It should be pointed out that in an actual oblique impact render-safe procedure, the barrel 
of the gun which launches the projectile is kept in close proximity to the target fuze. This 
actual configuration has the effect of providing lateral confinement on the projectile. 
However, both experiment and simulations are performed with a free-flying projectile, 
because a more proximate gun position might obscure the photographic coverage with 
propellant combustion products. This lack of lateral confinement has two effects: it permits 
projectile rotation after impact, and it reduces the accuracy of the aim in the experiment. 

3. NUMERICAL APPROACH 

A number of hydrocodes (for example CTH [2], SPH [33, CALE [4], EPIC [5-7], MESA 
[8], HULL [9], and DYNA [10]) are available to numerically simulate the render-safe 
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impact event in question. The term "hydrocode" describes that class of continuum mechanics 
based numerical codes capable of solving wave propagation problems. This investigation 
uses the Lagrangian-based explicit EPIC92 (Elastic Plastic Impact Calculations) hydro- 
code [5-7], because of: (i) previous impact modeling experience with EPIC92 and other 
similar Lagrangian-based hydrocodes [11], and (ii) EPIC's capabilities for modeling ignition 
and detonation phenomena in explosive materials [6, 7, 12]. This explosive modeling 
capability will permit future efforts to model a more realistic fuze configuration while at the 
same time retain compatibility with the current series of simulations. 

Since the three-dimensional dynamic equations of motion for the oblique fuze impact 
problem are intractable to solve in closed form, finite element methods are employed to 
obtain approximate solutions to the problem. A complete description of any boundary 
value problem in continuum mechanics involves specifying the geometry, boundary condi- 
tions, constitutive equations and failure or instability criterion. The finite element solution 
for the unknown field variables (typically displacements) over the domain of interest 
proceeds by using the method of weighted residuals or through the development of 
a variational principle for the problem (see Zienkiewicz [13] for a good review of finite 
element methods). As described in Zienkiewicz [13], a global stiffness matrix is assembled at 
each time step to obtain a finite element solution. Alternatively, the equations of motion are 
directly integrated in EPIC92, thus circumventing the need for the formation of a stiffness 
matrix [5]. 

3.1. Geometry 

A typical fuze geometry consists of a right-circular cone that threads into the projectile 
(Fig. 1 ). The cutaway view also illustrates the important internal fuze components such as the 
firing pin, detonator, and booster. Although these complex components are necessary for 
operation of the fuze under normal impact conditions, we replace them with a homogeneous 
material to simplify the analysis. Thus, the fuze model consists of an axially symmetric 
outerbody that encases an inner homogeneous core as shown in Fig. 2. The base of the fuze is 
2.40in. (61 mm) in diameter and the fuze height is 3.72 in. (94.5 mm) (Fig. 2). The projectile 
consists of a solid right-circular cylinder, 1.0 in. (25.4 mm) in diameter and 3.0 in. (76.2 mm) 
long, and impacts the fuze normal to its axis of symmetry during EOD render-safe 
procedures. 

3.2. Boundary conditions 

The boundary conditions are usually of mixed-type and are given in terms of displace- 
ments, forces, or their first time-derivatives. The fuze is assumed to be rigidly fixed at the base 
so that all x-, y-, and z-displacements vanish on the base surface (Fig. 2). We believe this 
assumption will not severely affect the results because the base of the actual fuze is tightly 
screwed into the ordnance (Fig. 1). Since the core material is press-fitted into the fuze 
outerbody, in the simulation we assume that the homogeneous brass core material is bonded 
to the fuze outerbody (Fig. 2). The projectile impact velocity is 198m/s and numerical 
solutions are sought for two impact points along the vertical fuze axis (Fig. 2). One impact 
point is 1.25 in. (31.75 ram) below the top of the fuze and the other impact point is 0.50 in. 
(12.7ram) above the base of the fuze; the bottom edge of the projectile impacts the fuze at 
these positions. 

Finally, we assume that the contact surface between the projectile and the fuze is 
frictionless. It is difficult to estimate the severity of this assumption because of the lack of 
dynamic friction data for these materials. However, friction effects dominate the interactions 
of bodies in very low-speed or quasistatic contact problems. Thus, in the late stages of the 
impact event, as the projectile decelerates, friction will play a more important role in the 
interactions. A three-dimensional slide line algorithm permits the Lagrangian-based hydro- 
code to accommodate the severe distortions encountered in impact problems. This algorithm 
typically involves defining a master and slave surface, so as to prevent element interpenetra- 
tion. A master surface and slave surface exist for both the projectile and the fuze in this 
analysis. 
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3.3. Constitutive equations 

The fuze outerbody material consists of 6061-T6 aluminum (EPIC92 material model 23) 
that encases an inner core of gun-cartridge brass (EPIC92 material model 2) (Fig. 2). The 
projectile material consists of 4340 (EPIC92 material model 9). The initial simulation results 
reveal that the projectile deforms more than that anticipated (Patel and Gold [1]). In 
subsequent analyses, we use a harder steel projectile, with a hardness of Rockwell C (Re) Rc57. 
The properties of this material are based upon a modification of an R~ 50, S-7 tool steel 
(EPIC92 material model 10) with a modified initial yield stress; the magnitude of the modified 
yield stress is based upon an empirical correlation that exists between Rockwell hardness and 
yield strength in various metals (see Oberg et al. [14]). The fuze deformation mechanisms 
observed for projectiles with these hardness values (Re30 and Rc57 ) are very different, and 
therefore will be discussed and compared in more detail in Section 4. 

The Johnson Cook viscoplastic constitutive model is used in the analysis together with 
a yon Mises initial yield condition [15, 6, 7]. An isotropic hardening rule governs subsequent 
yield surface behavior. The equivalent uniaxial stress, #, is defined as 

# = N/ 2 0"ijO'ij, (1)  

in which crlj is the deviatoric stress tensor. The Johnson Cook model incorporates strain, 
strain rate, and thermal softening effects where the corresponding parameters functionally 
appear in multiplicative form as, 

# = [A + B~,P"] [1 + Cln ?,*] [1 - T*'], (2) 

in which ~P is the equivalent time-dependent uniaxial plastic strain defined by, 

[ ~r'(t) N~ 3~°ij~"i j  ' (3) ~P(t) = [ d~p = f~-25~'P rt~,P 

do d o  

and deP~ ~ dcij-Dijkt dakz'Dok ~ is the fourth rank elastic modulus tensor, i*=/ , / io  is the 
dimensionless plastic strain rate for io = 1 s- ~, and T* is the homologous temperature. The 
material constants A,B, C, n, and m are determinable from material tests conducted at 
different strains, strain rates, and temperatures [6-7]. The equivalent adiabatic flow stress vs 
equivalent plastic strain plots at strain rates of 1, 100 and 10,000s ~ are derived from the 
EPIC92 material library constants (Fig. 3). All of the materials (except for brass) exhibit work- 
softening behavior which is a result of adiabatic thermal softening of dynamically strained 
material, rather than strength loss due to microcracking or other damage mechanisms. 

3.4. Damage and erosion criteria 

The damage criterion in EPIC92 is assumed to he a scalar function of the incremental 
(cumulative) equivalent plastic strain, A~ p, normalized with respect to the strain at fracture, s:f, 
[6, 7]: 

~A~ p. 
D -  cf , (4) 

where ~:f takes on a similar multiplicative form to that of Eqn (2), 

~:r= [D x + D2 eO~,,] [1 + D, lni*] [1 + DsT*], (5) 

in which a * =  am/6 is the pressure-stress ratio, cr m is the pressure (mean stress), and D~ 
through D 5 are independent material constants determined from fracture experiments. If 
D ~> 1 in Eqn (4) in a given finite element, the element can only sustain additional hydrostatic 
compressive stress but not shear or tensile stresses. Unlike other finite element codes which 
can model the propagation of discrete fracture surfaces in the finite element mesh [16], 
EPIC92 cannot simulate such behavior. EPIC92 does have the capability of handling severe 
distortions encountered in penetration problems, however, through an element erosion algo- 
rithm which eliminates element volume, but retains element mass, when a critical value of ~P 
is reached. In the current analysis, we consider that element volume erodes when ?,P = 1.5. 
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cartridge brass, 6061-T6 a luminum and 4340 and modified S-7 tool steels. 
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Fig. 4. Finite element mesh used in numerical simulations. 

4. N U M E R I C A L  R E S U L T S  

The three-dimensional finite element mesh used to model the fuze consists of 544 
symmetric brick finite elements; each brick element contains 24 tetrahedral elements that are 
formed by linking four constant  strain triangles (CST's) (Fig. 4). There are a total of  13,056 
tetrahedral elements. The low-order  displacement field within each CST element necessitates 
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F ig .  5. E v e n t  1. " S o f t "  h i g h - i m p a c t  E P I C 9 2  h y d r o c o d e  resul t s .  

the use of more elements in regions of high deformation gradient. One advantage of 
conducting the numerical analyses prior to the impact experiment is in determining the best 
time to radiograph the fuze. The results of the three-dimensional EPIC92 numerical 
simulations appear in Figs 5-7. Figure 5 illustrates the "soft" projectile (Re30) high-impact 
point results. Figures 6 and 7 illustrate the "hard" projectile (Rc57), high-impact and 
low-impact results, respectively. 

4.1. Event I. "Soft" projectile, high-impact point 

The "soft" projectile impacts the fuze ogive normal to the fuze axis of symmetry at 
a position located 1.25 in. (31.75 mm) below the top (measured along the fuze axis) of the fuze. 
The projectile plastically deforms and rotates clockwise as it progressively slips towards the 
fuze apex (projectile rotation sense is relative to that shown in Figs 5-7). The projectile's 
slipping motion scours a continuous groove, of elliptical form, into the fuze's surface. 
However, the groove is not so deep so as to expose the inner brass core of the composite fuze. 
After approximately 420 ~ts of continuous contact, the projectile slips off the end of the fuze 
and continues rotating clockwise. After 1200~ts, the rear edge of the projectile rotates 
sufficiently to hit the fuze in a secondary impact event; this impact causes only minor 
additional fuze deformation. Because the projectile sustains large permanent deformations in 
our simulations, while Patel and Gold Eli have observed that the projectile is relatively 
undeformed after impact, subsequent simulations use a harder steel projectile on the order of 
Rockwell C57. The "hard" projectile material properties are essentially that of an S-7 tool 
steel (see Section 3.3. Constitutive equations). 
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4.2. Event 2. "Hard" projectile, high-impact point 

Under identical impact conditions, and in contrast to the "soft" projectile impact, the 
"hard" projectile impact is relatively slip-inhibited and results in a greater penetration depth 
into the fuze than with the "soft" projectile. The "hard" projectile slips a negligible distance in 
the vertical direction, however, and rotates counterclockwise rather than clockwise, which 
can be seen by comparing Figs 5 and 6 at an elapsed time of 200 las. As in the "soft" impact 
event, the "hard" impact does not expose the brass core of the composite fuze. However, the 
"hard" projectile causes more deformation in the fuze than the "soft" projectile; a comparison 
of deformed meshes at 300 Its in Figs 5 and 6 shows a greater degree of bending in the fuze 
impacted by the "hard" projectile. Hence, it appears that a "soft" projectile impact will cause 
less fuze damage due to slip and permanent projectile deformation; the "hard" projectile 
causes more bending in the fuze and the projectile sustains less permanent deformation. The 
contact duration for the "hard" projectile high-impact is about 500 [as, which exceeds the 
durations of the other two impact events. 

Equivalent plastic strain, go, contours aid in visualizing the permanent deformation history 
of the fuze (Fig. 8). Equivalent plastic strain is a scalar representation of the tensorial strain 
state. The go = 0.20 contours develop asymmetrically beneath the edge of the projectile after 
20 ItS. Plastic strain then spreads through the aluminum outerbody and reaches the brass 
core at 401as (Fig. 8a). With increased projectile penetration and fuze bending, plastic 
deformation also appears on the back side of the fuze, and achieves go = 0.20 at 120 IJs. The 
plastic zones eventually merge to form a plastic "hinge" through the cross-section of the fuze. 
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The projectile also deforms permanently and gP = 0.20 is reached beneath the impact edge 
after 220 ~ts. With continued bending of the fuze, the plastic hinge widens somewhat, but then 
remains steady throughout the remainder of the impact process. 

4.3. Event 3. "Hard" projectile, low-impact point 

In contrast to the "hard" high-impact event, the "hard" low impact causes much less fuze 
bending, primarily because the low-impact occurs near the thick, rigidly-fixed fuze base 
where the bending stiffness is large (Fig. 7). Furthermore, because the impacted fuze surface is 
less oblique, the entire surface of the projectile contacts the fuze after 20 ~ts. This reduces both 
projectile rotation and slip along the fuze surface. The equivalent plastic strain contours are 
nearly symmetric about the contact region (Fig. 8b). In contrast to the high-impact event, the 
gP = 0.20 contours do not extend to the back side of the fuze, since there is not as much fuze 
bending. There is also a reduction in the contact time, and after 280 tas the projectile bounces 
off the fuze in elastic rebound. The impact simulation results are summarized in Table 1. 

5. IMPACT EXPERIMENTS 

In the experiment a 300 g cylindrical steel projectile is launched at 208 m/s from a 37 mm 
gun with a barrel diameter of 1.090 in. (27.7 mm). A schematic showing the relative positions 
of the fuze, projectile breakwire fixture for velocity measurement, X-ray tube and film plate, 
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Table  I. S u m m a r y  of impac t  s imula t ion  results 

Shape of Projecti le Con tac t  Tip angle  of Tip displ, of Project i le  

= 0.20 ro ta t ion  rate* dura t ion  neutra l  fiber t neutra l  fiber* deformat ion  

con tours  (rev/s) & sense (ps) (deg) (nm) 

Event  1 232.8 
"'soft", h igh- impac t  n/a  C W  420 37.3 30.7 modera te  

Event  2 Asymmet r ic  144.8 

"hard" ,  h igh- impac t  C C W  500 36.8 34.5 min ima l  

Event  3 0.8 
"'hard", low- impac t  symmet r ic  C W  280 3.7 7.9 min ima l  

~at 700 ps. 

and 16mm Hycam camera is given Fig. 9. The propelling charge consisted of 28g of 
M2-165 mm gun propellant and was ignited using an M38 B-2 primer. An obturator was 
attached to the projectile during firing to reduce combustion gas emissions. Several pre-test 
shots verified the projectile velocity repeatability. The aim point was 1.25 in. (31.75mm) 
below the fuze top but the actual impact point was 0.27 in. (6.8 ram) below the aim point. 
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37 mm gun projectile path 

/ 

x-ray tube Hycam camera 

Fig. 9. Ballistic range configuration. 

Based on the results of the simulation, it was desired to have a radiographic image of the 
impact event taken 250 gs after initial impact. The actual radiograph was taken 272 ~ts after 
impact, and we compared this radiograph with the hydrocode results at 280 las (Fig. 10). At 
this instant, the brass core of the fuze is bent but not fractured, and the aluminum outerbody 
appears fractured through the cross-section. The projectile deforms by slightly bulging 
beneath the point of impact and the projectile's tail end is rotated slightly upward at this 
instant in the impact. 

The steel projectile penetrated into the fuze to a maximum depth of approximately 13 mm 
and formed a circular indentation in the aluminum. The aluminum subsequently fractured 
and the fuze top was severed (Fig. 11). The fuze top fragment also contains a circular impact 
imprint in its surface. Also visible in Fig. 11 is the bolt that holds the fuze to the 0.25 in. 
(6.55 mm) thick rolled-homogeneous armor (RHA) base and the failed weld line in the RHA 
base plate. The weld in the RHA base plate failed during impact and the entire fuze assembly 
rotated backwards approximately 35 ~. This was an unanticipated fixture failure, and 
prevented quantitative comparisons between the experimental and numerical fuze deforma- 
tion results. The projectile sustained little permanent deformation, although a small chip was 
visible on the edge beneath the impact point. 

6. COMPARISON OF NUMERICAL AND EXPERIMENTAL RESULTS 

The experimental results and the simulation results generally agree during the initial stages 
of the impact but depart significantly at later stages of the penetration. The reasons for the 
observed differences between the simulation and the experiment appear in the discussion 
below, and are related to (i) the inability of the hydrocode to effectively model fracture, and (ii) 
boundary condition differences between the experiment and those assumed in the numerical 
simulation. 

The most obvious difference between our predictions and the experimental results is that 
in the experiment the fuze fails by fracture while we predict that the top of the fuze remains 
intact and connected to the fuze body for identical impact conditions. Despite the fact that 
the plastic "hinge" might suggest a failure location, the inability of the hydrocode to model 
gross, large-scale fracture in structures is a primary reason why there is a disparity between 
numerical impact results and the experiment. Instead, the hydrocode simulates fracture 
failure by eliminating an element's ability to sustain shear and tensile normal stress when the 
level of damage exceeds a critical level in that element. To address this type of fracture 
problem, the EPIC92 hydrocode would require an algorithm that permits finite element 
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Fig. 10. X-ray radiograph of impact event at 272 ps and EPIC92 hydrocode simulation at 280 las. 
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Fig. 11. Photograph of damaged fuze simulant showing severed fuze top with circular imprint of 
projectile. 

mesh bifurcation when a critical energy release rate is attained or by using specialized 
crack-tip singularity finite elements [-16]. 

The boundary conditions are somewhat different between the experiment and the numeri- 
cal simulation, despite our efforts to minimize them. Boundary condition differences include, 
(i) modeling the contact surface as a frictionless interface, whereas in reality, contact friction 
can influence the deformation in low-speed impact problems, (ii) a disparity in the impact 
point and impact velocity between the experiment and the simulation. Additional hydrocode 
simulations could have been conducted to match the actual impact point in the experiment. 
However, the additional time and expense needed to conduct the additional simulations 
would not have added further insight into the render-safe problem, since the fundamental 
fracture physics could not be modeled by the hydrocode, and (iii) interface bonding 
differences between the brass core and the aluminum outerbody. Recall that in the experi- 
ment, the brass core was press-fitted into the aluminum outerbody and that given enough 
force, slip could occur along this interface. The interface was modeled so as to prevent slip in 
the numerical simulation. Furthermore, failure of the weld line in the experiment permitted 
the fuze body to rotate at its base, whereas the base of the fuze was rigidly fixed in the 
numerical simulation. 

7. ANALYTICAL APPROACH 

The fuze-projectile problem addressed earlier is reminiscent of a cantilever beam that is 
subjected to transverse impact. Although a complete review of the vast literature available on 
this topic is beyond the scope of this report, some notable works relevant to the current 
problem should be mentioned. Much of the original research on the transverse impact of 
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elastic-plastic beams was funded by organizations such as the Office of Naval Research 
and can be found, for example, in early issues of publications such as the ASME Journal 
of Applied Mechanics. Both Lee and Symonds [-17] and Parkes [18] investigated the 
extent of applicability of using the methods of static plasticity solutions to dynamic 
problems. Their rigid-plastic analyses predict the development of a moving plastic "hinge". 
Interestingly, a plastic hinge develops beneath the projectile in Event 2 (Fig. 8), a defor- 
mation feature which is common in problems addressed in the literature involving both 
quasistatic and impulsively-loaded elastic-plastic beams. For short beams, the effect 
of shear deformations are no longer negligible and their effects can be estimated by 
construction of so-called interaction curves using a plane stress approach [19, 20] or using 
a variational approach [21]. Hodge's [21] analysis shows that for simply supported 
elastic plastic short beams in which beam thickness is approximately equal to beam length 
(as in this work), the maximum load that the beam can sustain is reduced by approximately 
20% if one includes the effects of shear in the analysis. Some of the discrepancies between 
theory and experiment discussed in Parkes' [18] paper were re-examined by Ting [22, 23], 
whose analyses rigorously account for geometrical effects due to large plastic deformations of 
the rigid-plastic beam. Keer and Schonberg [24] solve an elastic cantilever beam problem 
subjected to two types of indentation displacement fields using a local elasticity solution 
coupled to a global beam theory solution approach. Both the local deformation effects of the 
indentor and the global deformation of the cantilever beam are modeled, however, the 
solution is limited to elastic media. Finally, Shu et al. [25] describe the mechanics of oblique 
impact of impulsively loaded cantilever beams in terms of axial and flexural components. 
Their model includes a mass of finite size at the beam tip, which produces a double "hinge" 
deformation mechanism. The model is used to explain why the observed curvature of the 
beam tip is less than that predicted by Parkes' [18] single "hinge" model. Closed-form 
three-dimensional analytical solutions for transient loading of composite elastic-plastic 
bodies of variable cross-section do not appear in the literature so that a precise com- 
parison with the hydrocode results is not possible. A closed-form solution to the elastic- 
plastic short beam impact problem would be invaluable to the explosive ordnance disposal 
community. 

Often, the analytical solution to the "real" structural mechanics problem is intractable, 
whereas useful solutions can be obtained for a reduced or simplified version of the original 
problem. In this spirit, we consider the problem of an elastic perfectly plastic cantilever 
beam, of circular cross-section, subjected to transverse impact as a model of the fuze impact 
problem. The analysis uses elementary beam theory with the following additional simplifying 
assumptions: 

• small deformation theory 
• beam inertia is neglected 
• beam material is homogeneous (not composite) and elastic-perfectly plastic. 
• shear stresses are neglected 

The remainder of this Section is devoted to developing a simple analytical cantilever 
beam model of the fuze for estimating the total amount of strain energy absorbed by the fuze 
during impact. The analytical model results are then compared with the hydrocode 
predictions. 

7.1. Deflections of a cantilever beam 

The deflection curve of a beam can be shown to be governed by the following second-order 
ordinary differential equation [26], 

d2v M 
- ~ ,  { 6 )  

dx 2 - E1 

in which v is the deflection, M is the bending moment applied to the beam, E is Young's 
modulus, I is the cross-sectional moment of inertia about the neutral axis, and ~ is the 
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Fig. 12. Modeling simplifications. (a) Simplified fuze geometry (prismatic circular cantilever beam). 
(b) Beam cross-section showing integration coordinate system and regions of elastic and plastic 

behavior. (c) elastic-perfectly plastic material model. 

curvature  of the neutral  axis. The quant i ty  EI  is known as the flexural rigidity of the beam. 
Two  successive integrat ions of Eqn (6), with bounda ry  conditions, v(L) = v'(L) = 0 (Fig. 12a), 
provide  the solution, v(x), for an end- loaded cantilever beam as, 

p x  3 P x L  2 p L  3 

v(x) - 6E~ 2E~ -~ 3 E I '  (7) 

in which Lis  the beam length, P is the magni tude  of the end-load,  and the bending m o m e n t  is 
given by M = - Px.  The m a x i m u m  deflection occurs at the canti lever tip, x = 0, and is given 
by, 

p L  3 

Vm~* -- 3EI" (8) 

7.2. Elast ic-plas t ic  deflections o f  a cantilever beam 

M o m e n t  equil ibrium of stress abou t  the neutral  axis of the beam yields the following 
integral expression for the resultant  bending m o m e n t  as, 

= [ [  a y d A ,  (9) M 
3.2 A 
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in which a is the longitudinal stress acting normal to an element of cross-sectional area, dA, 
and y is the distance from the neutral axis to dA. The fundamental assumption in slender 
beam theory is that plane sections remain plane, and normal to the longitudinal fibers of the 
beam so that the longitudinal strain, c = ~cy. For a beam made of an elastic (Hookean) 
material we have, ~r = Ee, thus, 

a = KEy. (10) 

| t  is clear from Eqn (10) that the maximum stress occurs at the outer fibers of the beam 
(Fig. 12b). For an elastic-perfectly plastic material the maximum stress is the yield stress 
(Fig. 12c) and we have, 

O'y ~- KEe. ( l l )  

in which e is the distance from the neutral axis to the edge of the elastic core (Fig. 12b). 
Substitution of Eqns (10, 11) into Eqn (9) and using (dA) = 2z(dy) in Eqn (9) for a beam of 
circular cross-section and diameter h, we arrive at, 

= aydA -- y2 x / (h /2 )2  _ y2 dy + 4ay•/'2yx/(h/2) 2 - y2 dy, (12) ? 
M 

,,) h,'2 e , }  e 

or, 

M = 3O'y sin X(2e/h)h4 + x / h  2 - 4 e 2 ( l O e h  2 - 16e3)Oy (13) 

96e 

The first integral on the right-hand-side of Eqn (12) represents the contribution to the 
bending moment due to elastic stresses while the second integral in Eqn (12) represents the 
contribution to the bending moment due to stress in the plastic region. Yielding begins to 
occur in the circular beam when M = My or when, 

lim M = My, (14) 
e ~ h / 2  4 

which gives for the yield moment, My, for the circular beam, 

°yh37c (15) 
M y =  32 

As the bending moment of the beam increases, the region of purely elastic behavior shrinks 
until the maximum or limiting moment in the beam is reached. The limit is known as the 
plastic moment, Mp, and is obtained as, 

lim M = Mp.  (16) 
e~O ¢ 

For the beam of circular cross-section the plastic moment is given by, 

Mp -- O'yh3 (17) 
6 

Timoshenko and Gere [26] define a shape factor, f ,  for a beam of given cross-sectional 
geometry as the ratio of the plastic moment to the yield moment, or f = M p / M y .  For a beam 
of circular cross-section f = 16/37z ~ 1.70, as obtained by dividing Eqn (17) by Eqn (15). In the 
linear elastic range, the relation between bending moment and curvature can be nondimen- 
sionalized [26] as follows, 

M ~c 
-- 0 ~< M ~< My (18) 

My Ky 

Equation (18) is a linear function on a moment-curvature diagram (Fig. 13). However, 
as M increases beyond My,  and the beam begins to yield, the moment-curvature relation- 
ship becomes nonlinear and the ordinate value approaches an asymptote representing 
the plastic moment, Mp, which is equivalent to the shape factor, f ,  as shown in Fig. 13. 
In the nonlinear range, the bending moment in Eqn (13) is nondimensionalized by dividing 
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Fig. 13. M o m e n t  vs curvature relationship for an elastic-plastic cantilever beam. 

by Eqn (15) to obtain, 

3 sin-  r + 2 - 
M \ K /t\lEy/ \ \ G ' /  (19) 

\/~y/ 

in which X/Xy = h/2e. By way of comparison, it can be shown that the moment curvature 
relation for a rectangular beam takes on the relatively simple form 1-26], 

2 M 3 Xy 
M y -  2 2K2, My ~< M ~< Mp (20) 

which can be solved for the curvature ratio in terms of the moment ratio as follows, 

~: x/2/2 
My ~< M ~< Mp. (21) 

toy ~/3 M 

M r 

The presence of the arcsine function in Eqn (19) makes the direct algebraic solution for K/G, 
difficult. However, an approximate solution may be obtained by plotting Eqn (19) for given 
values of K/xy and curve fitting the resulting nonlinear equation using a Marquardt 
Levenberg (M-L) regression algorithm [27]. Equation (19) is plotted (Fig. 14) together with 
the following approximation obtained using the M-L method, 

x~/2 
, My <~ M ~< - M p  (22) 

G 1 ~ 3  ~ M 
M r 

where we have replaced the M-L derived numerical value, 0.86610, in the numerator of Eqn 
(22), with xf3/2 to more closely resemble the form of the numerator in Eqn (21). Before we can 
determine the strain energy in the beam, we must determine the tip deflection, 6, as a function 
of the applied load, P. The tip deflection, 6, of the elastic-plastic beam may be determined by 
use of the second curvature-area theorem ([-26], pp. 306-309) as follows, 

('xl px2 f~. L 
~ = J o  E I d X +  ~cx dx, (23) 

/ 
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Fig. 15. Load vs deflection, Eqn. (24), for an elastic plastic cantilever beam of circular cross-section. 

in which x 1 represents the limit of purely elastic behavior in the beam. The tip deflection is 
evaluated by first substituting the approximate curvature expression, Eqn (22), into the 
integrand of the second integral in Eqn (23), and using the identities, ~Cy = My~E1, x 1 = My~P, 
and My = PyL. This results in the following approximate expression for the dimensionless 
deflection (plotted in Fig. 15), 

p 2 
+ 0 2 9 4  P ~6 P , P 16 f, ~y Py 3~  

in which 8y = PyL3/3EI, from Eqn (8), is the maximum elastic deflection at the yield load Py. 

When P/Py = 16/3~, the dimensionless deflection is 6/~ = 2.55. 
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7.3. Complementary energy of an elastic plastic cantilever beam 
The dimensionless complementary energy, U*, in a beam subjected to inelastic bending 

may be obtained by integrating Eqn (24) with respect to P/Py as, 

U* I 1 P ~ d ( P )  IP'6(P/PY)d(P~). (25) 
=doey k e y / + o ,  6,. k e y /  

The first term in Eqn (25) is the elastic contribution to the complementary energy while the 
second term is the elastic plastic contribution to the complementary energy. Evaluation of 
these integrals gives the total dimensionless complementary energy of the beam, 

, f U* =½+(2x/3(J ' -p l ) \ / / . f -p l  +(p, - 1) + , ~ / 3 , / f -  1(3pl - 2 f -  1))/pl, (26) 

in which p~ = P/Py and f =  16/3n. At the maximum bending load, Pl = f =  16/3n, and 
U* = ~ + 1.005 = 1.505 in Eqn (26). Also, 

P a  
U* q- U - Py •y, (27) 

in which U is the dimensionless strain energy of the beam. Hence in Eqn (27), U = 
(16/3n)(2.55) - 1.505 = 2.82. This result shows that the total dimensionless strain energy, at 
the moment the plastic hinge is formed, is over 5.5 times the energy absorbed in the purely 
elastic bending regime, the ratio of plastic bending strain energy to total elastic bending 
strain energy is 0.96. 

8. COMPARISON OF NUMERICAL AND ANALYTICAL RESULTS 

In order to determine the strain energy in the elastic-plastic beam, we must first calculate 
realistic values of Py and 6y using the material properties of 6061-T6 aluminum. To simplify 
the analysis, the effect of the brass core material on the inelastic bending of the cantilever 
beam is not considered. We assume in our analysis that the cantilever beam is composed 
entirely of aluminum which is "stronger" than the brass up to an equivalent plastic strain of 
0.20 (Fig. 3). Therefore, for a given deflection, our analysis would overestimate the beam 
bending strain energy for /1, ~< 0.20, and underestimate the strain energy for iv > 0.20. 
However, a composite beam solution could be obtained by generalizing Eqn (12) to account 
for contributions to the moment equilibrium from both the brass and aluminum materials. 
The load at the onset of yield is a strong function of beam thickness, h, and is given by, 

p, Mv 6yh37[ 
- =  L -  32L'  (28) 

and the deflection at yield is, 

(~y - -  O'yh 37~L2 _ 26y L2 

96EI 3Eh ' (29) 

in which the moment of inertia, I = nh*/64. With Oy = 3.25 kb (4.7 x 104 psi), L=  2.47 in. 
(62.7 mm) (measured from the impact point to the base), E = 739 kb (1.07 x 107 psi), h = 2.4 in. 
(61 mm), Eqns (28, 29)give, Py = 25,893 lbf(115 kN), and 8y = 0.0074in. (0.188 ram). 

The effect of beam taper can be analyzed by recognizing that the fuze geometry consists of 
a nonprismatic (tapered) cone in which the diameter can be approximated with the 
expression, h = h(x) = h a + (h b - ha)x/L. It can be easily shown by substitution of h(x) into 
Eqn (28) that the load, Py, required to cause yield is a function of position along the length of 
the cone of diameter, ha, at the impact location, and of diameter, hb, at the build-in end. 
Therefore Eqn {28) can be rewritten as, 

( x)3 ¢~y ha+(hb--h,) ~ n 

PY = 32x (30) 
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with similar substitutions required in the expressions for beam inertia, I, and deflection, 6y. In 
a prismatic cantilever beam the position of maximum stress, a . . . .  and bending moment  are 
coincident and occurs at the built-in end with diameter, h b. However, in a tapered cantilever 
beam we find that the maximum stress is, 

128PL haL 
at x =  (31) 

o- . . . .  - -  27nhZ(hb - ha)' 2(h b - h~)' 

in which the position of O'ma x is determined by setting day/dx = 0 in Eqn (30). In the fuze 
p r o b l e m ,  h b = 2.4 in. (61 mm) and h a = 1.39 in. (35.3 mm), so that O'ma x occurs at x = 0.689L 
measured from the impact point toward the built-in end. In addition, we find that the ratio of 
maximum stress, am,x to the stress, ab, in the built-in end of the tapered beam to be, 

O" . . . .  4h3 

~b 27 hZa(hb - ha)' (32) 

in which for the specific case of the fuze geometry we find that area X is 5 % greater at x = 0.689L 
than (7 b at x = L (a b is determined by letting x = L in Eqn (30)). For the specific case of 
a tapered circular cantilever beam in which h b = 2ha, Timoshenko and Gere [26] find a 19% 
increase in CSnax relative to o- b which occurs at x = 0.5L. Our result in Eqn (32) is more general 
however, and reduces to the Timoshenko and Gere [26] result when h b = 2ha. The assump- 
tion that the fuze geometry is prismatic is not so bad since there is only a 5% difference 
between ama~ and o b in a beam with the fuze geometry considered in this work. 

An estimate of the average load, P, on the cantilever beam can be determined from the 
length of time it takes the projectile to decelerate and begin to rebound. Inspection of the fuze 
centerline nodal position vs time plot (Fig. 16) indicates that the projectile's velocity reversed 
at about 360 gs and that the amount  of elastic rebound beneath the projectile is about 
0.0298 in. (0.747 mm). The change in the projectile's momentum with respect to time is equal 
to the average impact force P = 37, 0941bf (165kN) which is determined using an initial 
projectile velocity of 198 m/s and mass of 0.3 kg. The beam theory solution provided the value 
of Py = 25, 893 lbf (115 kN) from Eqn (28), so that P/Py = 1.43. Since Py is sensitive to the 
value chosen for h, see Eqn (28), if a slightly smaller value of h was used in the calculation, 
rather than the maximum value used of h b = h = 2.4in. (61 ram), Py would dramatically 
decrease, and P/Py would become f =  Mp/My = 16/3n = 1.7. At this limit the beam is in 
a state of unrestricted plastic flow. A state of unrestricted plastic flow occurs in the fuze very 

N 

0.10 

0.08 

0.06 

0.04 

0.02 

300o i 
0.00 

-0.040 -0.020 0.000 
x (m) 

t-O~s 

~~ ker 

2° 
Point 

0.020 

Fig. 16. Fuze centerline distortion (in meters} vs time for Event 2. 



i 

o 

x 
1.75 

2.00 i i 

1.50 

1 25 

I 00 

0 75 

0 50 

0 25 

0 00 

-I.0 

1 _ I 

-0.5 0.0 0.5 

i i i i 

Oblique impact modeling of fuzes 455 

I'nt~TflllR~ 
° 

2 . 0 0  

:1:88 
5.00 

I 

1 .0  

-1  
×10 

Fig. 17. Equivalent plastic strain contours at 120 tas, showing fully developed plasticity across the 
diameter of the fuze. 

early in the deformation history as seen in the well developed pattern of plastic strain through 
the fuze cross-section at 120 Its (Fig. 17). The total strain energy absorbed by the fuze during 
impact can be estimated by assuming that P/Py = Mp/My = 16/3rt = 1.7 and 6y = 0.0074 in. 
(0.188 mm) from Eqn (29). The actual deflection beneath the load point from the numerical 
simulation at 360 ~ts is 6 = 0.657 in. (16.7 mm), which results in 6/6y = 89. Hence, the total 
dimensionless strain energy absorbed by the fuze due to elastic-plastic bending is estimated 
with the aid of Fig. 15 to be, 

Uso t= -2 .55 + U  16 

This energy is dimensionalized through multiplication by Pyay which results in a total strain 
energy of 2387 ft. lbf or 3.24 kJ attributed to elastic-plastic bending of the fuze. The 0.3 kg 
projectile can impart 5.88 kJ of kinetic energy during impact. Therefore, the plastic bending 
energy is 55% of the initial projectile kinetic energy. The fuze also suffered a considerable 
amount of localized deformation beneath the projectile [ Fig. 17). The energy absorbed by this 
localized deformation can be approximated by multiplying the average projectile indenta- 
tion depth, 6p, (estimated from the experiment) with the average impact force, P, resulting in 
Pap =(37,094) (0.45)in. lbf= 1.89kJ. This localized plastic energy is 32% of the initial 
projectile kinetic energy. Hence, the energy absorbed in fuze bending is about 1.7 times 
greater than the energy dissipated by localized deformation beneath the projectile. In the 
Event 2 simulation, the EPIC92 code estimates that the total plastic work absorbed by the 
fuze is 91% of the initial projectile kinetic which is in close agreement to our analysis which 
predicts that 87% of the initial projectile kinetic energy is dissipated in plastic work. The 
EPIC92 code also predicts that the rotational kinetic energy associated with the rebounding 
projectile is only 1% of the initial projectile kinetic energy. 

The analytical model of an elastic plastic beam subjected to an end load provides insight, 
at least to the point of fracture, into the render-safe mechanics of fuzes. It is estimated that 
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55% of the initial projectile kinetic energy is dissipated in elastic-plastic fuze bending and 
32% of the energy is dissipated in localized deformation beneath the projectile. These results 
are corroborated by the EPIC92 numerical results which predict that 91% of the projectile 
kinetic energy is dissipated into target plastic work; the remaining energy is primarily 
dissipated as plastic work in deforming the projectile. 

9. C O N C L U S I O N S  

1. The results of numerical hydrocode simulations of oblique impact of a cylindrical steel 
projectile onto an a luminum-brass  composite fuze simulant indicate that projectile hardness 
is an important  parameter  that governs the deformation history of the fuze; a "soft" steel 
projectile impacted the fuze and created a gouge, elliptical in form, as it ricocheted off the 
fuze, whereas a "hard" steel projectile penetrated to a greater depth and bounced obliquely 
off the fuze. 

2. Reasons for the observed disparity between the experiment and the hydrocode simula- 
tion of a materially and geometrically identical fuze impact problem include (i) the inability of 
the hydrocode to effectively model global fracture, and (ii) boundary condition differences 
between the experiment and the numerical simulation; in the experiment a weld line failed 
which provided an additional rotational degree of freedom, whereas in the numerical 
simulation the fuze maintains a rigid base. Nonetheless, the plastic "hinge" predicted in the 
simulation might suggest an indication of where the failure might be expected to occur. 

3. The projectile's sense of rotation during impact is related to projectile hardness and 
impact point as the numerical simulations indicate that the projectile (i) rotates clockwise in 
impact Event 1 involving the "soft" projectile, because of slip between the projectile and fuze, 
(ii) rotates counterclockwise in impact Event 2, involving the "hard" projectile, since the 
harder projectile penetrates into the fuze, thereby precluding slip, and (iii) remains relatively 
level in impact Event 3 as the obliquity of impact is less than in Events 1 and 2. 

4. Positioning the gun close to the fuze during firing provides a lateral constraint to the 
projectile during impact. The practice would help prevent projectile rotation during flight 
and impact and would also reduce the variability in impact response that occurs as a result of 
projectile impact obliquity, impact location, and projectile hardness effects. 

5. An analytical model of a cantilevered elastic-plastic beam subjected to an end load 
provides insight, at least to the point of fracture, into the render-safe mechanics of fuzes. For 
the case studied, it is estimated that 55% of the initial projectile kinetic energy is dissipated in 
elastic plastic fuze bending and 32% of the energy is dissipated in localized deformation 
beneath the projectile. These results are corroborated by the EPIC92 numerical results which 
predict that 91% of the projectile kinetic energy is dissipated into target plastic work; the 
remaining energy is primarily dissipated as plastic work in deforming the projectile. 
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