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Summary

A computational study to assess terminal ballistic performance issues of adding a steel sheath, or jacket, to
a depleted uranium (DU) penetrator has been performed. The CTH hydrocode was used to model DU
penetrators with steel sheaths of various thicknesses against semi-infinite rolled homogeneous armor (RHA),
finite RHA, and oblique plate targets. Guided by the initial results, additional semi-infinite RHA simulations
were performed to support the development of a generalized penetration model for jacketed rods. The model
computes RHA penetration as a function of impact velocity and normalized jacket thickness (thickness over
diameter) and compares very favorably with experimental DU and steel data. The model indicates that
“bulk” density (areal density) can considerably underestimate jacketed rod penetration. In addition, some
insight into the penetrator and target flow shape factors (k, and k,) is obtained. © 1998 Elsevier Science Ltd.
All rights reserved.
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penetrator diameter
target “resistance”
penetrator shape factor
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jacket thickness
impact velocity
penetrator “strength”
penetration parameter
density
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1. Introduction

The sheathed, or jacketed, penetrator concept is certainly not novel. Small-caliber ammunition
has been using jackets for many years. In the large-caliber, kinetic energy (KE) tank ammunition
arena, several developmental and fielded projectiles have utilized jacketed penetrators in the past
due primarily to the poor mechanical properties of the high-density alloys available at that time. By
placing a jacket on the penetrator, problems associated with launchablity and target interaction
were alleviated. As the mechanical properties of high-density materials improved, the need for
a jacket diminished and terminal ballistic evaluation showed that a jacket degraded performance.
Thus, the use of jacketed penetrators in KE tank ammunition ceased.

Recent trends in KE armor-piercing ammunition are toward higher aspect ratio penetrators and
increased velocity. Cartridge-based systems studies have shown that increased length and aspect
ratio tend to maximize penetration performance [1-3]. Since limits exist on length (due to system
constraints), increased aspect ratio remains a primary avenue to improve KE ammunition perfor-
mance. However, as the aspect ratio increases beyond a certain point, significant technological
hurdles appear in one or more phases of the ballistic cycle, placing doubt on the effectiveness of
monolithic KE penetrator solutions against future armor systems.

To extend the life of KE weapons, studies examining alternate lethal mechanisms have been
initiated. Within these efforts, two main thrusts exist: increasing penetrator efficiency or capacity,
and minimizing or eliminating certain armor effects. Various concepts proposed and studied
include, but are not limited to, segmented penetrators, rod-tube penetrators, sliding (extending)
penetrators, and noncircular cross-section penetrators. These solutions tend to be complex, and
many require supporting technologies that make fielding a long-term proposition. A simpler,
short-term concept under consideration is to sheath, or jacket, the penetrator [4-8]. The goal here
is to launch the maximum length penetrator, at elevated velocities, without encountering the
aeroballistic problems associated with extreme aspect ratio. The key is to design the penetrator so
that the sheath influences interior and exterior ballistics in the most favorable manner, without
detracting from terminal ballistic performance.

With the advent of supercomputers and sophisticated analysis packages, sufficient tools exist
today to study the phenomenology of a jacketed penetrator at each phase of the ballistic cycle. This
paper discusses a study conducted to examine the penetration mechanics of jacketed penetrators.
The CTH finite volume code was used to simulate the penetration event. Penetrators with
a length-to-diameter ratio (L/D) of 10 were employed in this study to make the CPU time of each
simulation reasonable. It was felt that any differences in performance due to increased L/D would
manifest as a simple offset and will not distort the basic behavior. The goal was to observe how
a steel jacket on a depleted uranium (DU) penetrator affects penetration, and then determine how
to minimize any adverse effects, and if possible, develop a generalized penetration model.



B.R. Sorensen et al. | International Journal of Impact Engineering 22 (1999) 71-91 73
2. Simulations and modeling
2.1. Numerical aspects of jacketed rod penetration

A number of calculations were undertaken to examine the terminal ballistic effects of steel
jacketed, DU penetrators striking semi-infinite and finite thickness rolled homogeneous armor
(RHA) targets. The first phase of calculations considered the five sets of initial conditions presented
in Table 1. For each case, the thickness of the jacket was varied between the limiting cases of
monolithic DU and steel penetrators, keeping the indicated parameters constant.

All calculations were performed with CTH [9], a second-order finite volume code designed to
minimize the dispersion present in Euler codes. The Mie—Griineisen equation-of-state option was
used to compute the hydrodynamic component of the stress tensor. Deviatoric stresses were
computed from an incremental elastic-perfectly-plastic model using split-Hopkinson bar data
reported by Nicholas [10]. In the version of CTH used in these studies, fracture can be modeled
based on pressure or principal stress. The pressure fracture criterion can be valuable in the presence
of high-pressure gradients that occur during hypervelocity impact. In addition, tensile pressure
cutoff criteria have been used successfully to model spallation in metal plates [11]. However, for
ordnance velocity impacts where peak pressures are much lower and decay to the order of the
material strength within one or two wave reverberations in the characteristic dimension, the use of
a pressure criterion means that failure will not occur unless it occurs on the first passage of the
reflected pressure pulse in the characteristic dimension. Using this option is equivalent to perform-
ing a calculation without accounting for failure. More realistic results can be obtained with
strain-based criteria [12—14]. However, such a criterion was not available in CTH at the time
these calculations were undertaken. Therefore, failure was based on principal stress exceeding
material strength by a factor of 2.5. Comparisons for a few cases were made with calculation using
a pressure-basis failure criterion. Little difference was observed between the two.

The mesh used a regular cell size of 0.115x0.115 cm/cell, resulting in 20 cells across the
penetrator diameter with at least two cells across the jacket. The penetrator core/jacket interface
was placed on a computational grid line to prevent mixed cells and minimize diffusion. Standard
CTH Johnson-Cook [15] parameters where implemented and are listed in Table 2.

Table 1
Simulation matrix showing penetrator and target configurations

Case Target Parameters held constant Variable parameters

f{T/D]

Diameter Velocity  Energy Mass

(Y

1 Semi-infinite RHA ; Velocity, mass
2 Semi-infinite RHA N ¢ Energy, mass
3 Semi-infinite RHA J J J Diameter

4 150 mm RHA J Energy, mass
5 250 mm RHA J y J Diameter

p ;

254 mm RHA @ 60° J Energy, mass

* Only monolithic DU and one specific jacketed penetrator geometry were modeled.
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Table 2
Johnson—-Cook constitutive parameters
Material A B n C m
(MPa) (MPa)
DU core DU-0.75 Ti 1079 1120 0.25 0.007 1.00
Steel jacket S-7 tool steel 1539 477 0.18 0.012 1.00
RHA target 4340 steel 792 510 0.26 0.014 1.03

Each set of calculations for the various initial conditions began with a baseline calculation of
a L/D 10, DU rod (230 x 23 mm). This was followed by calculations where the sheath thickness was
taken to be D/10, D/5, and D/2.5, where D represents the diameter of the rod. For some conditions,
a steel rod was also considered. In terms of the sheath thickness (T') to projectile diameter (D) ratio,
the simulations spanned T/D ratios of 0.0 (DU rod), 0.1, 0.2, 0.4, and 0.5 (steel rod).

Since length is held constant in this study, penetrator diameter must increase as jacket thickness
increases for the cases where penetrator mass is constant, resulting in L/Ds of 10, 8.9, 7.6, and 6.6 for
T/D ratios of 0.0, 0.1, 0.2, and 0.4, respectively. This introduces a difficulty in analyzing some of the
data. Penetration per unit rod length, P/L, is known to be dependent on L/D. Therefore, the
difference in L/D for the constant mass cases must be accounted for when discussing the results.

One last issue to discuss prior to presenting the results is the assumption on the initial condition
of the interface between the penetrator core and jacket. To ensure adequate shear stress distribu-
tion between the core and jacket at launch, a traction mechanism (e.g., threads, shrink fit) will be
required. This traction mechanism would prevent the occurrence of an axial velocity gradient
across the interface during the interior and terminal ballistic phases. However, a radial velocity
difference would remain possible as the jacket can radially separate (expand) from the core. (A
localized axial velocity difference is now possible in this region.) Modeling this type of interface is
possible in structural finite elements, but not in Eulerian finite volume codes. Here, the interface
must be unconstrained, or constrained in both the axial and radial directions. As the latter case was
felt to be more appropriate, a constrained interface was adopted for this study. While this interface
condition effectively locks the interface, the jacket can still separate from the core, but the resulting
shear stresses would be much larger than could be supported for any manufacturing process. Other
interface conditions will be examined in the future.

2.1.1. Semi-infinite target penetration

Results for the semi-infinite target calculations are shown in Table 3 and more succinctly in
Fig. 1. Depending on which parameters are held constant, the results indicate that a thin sheath
(T/D ~0.1) either does not detract from the rod’s penetrability or enhances it slightly. For
increasing sheath thickness, there is a corresponding degradation of penetration depth for all cases
considered. While an optimum sheath thickness has not been determined in this study, it is clearly
in the neighborhood of D/10.

The constant energy curve (Case 1) in Fig. 1 differs in shape from the constant velocity and
constant mass curves (Cases 2 and 3) and also shows an increase in performance. To provide
a different view of the data and to also validate the results, Fig. 2 plots normalized penetration
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Table 3
Semi-infinite RHA penetration results
Case T/D Rod Sheath Rod Striking Impact P/L Residual
number diameter thickness mass velocity energy length
{(mm) {mm) (kg) (m/s) (MJ) {mm)
0.0 23.0 — 1.777 1700 2.568 1.14 10.8
1 0.1 23.0 2.3 1.406 1911 2.568 1.24 8.0
(Constant 0.2 230 4.6 1.117 2144 2.568 1.26 8.8
energy) 0.4 230 9.2 0.787 2555 2.568 1.03 13.5
0.5 23.0 — 0.745 2626 2.568 0.88 7.8
5 0.0 23.0 — 1.777 1700 2.568 1.14 10.8
0.1 230 23 1.406 1700 2.032 1.09 13.5
(Constant 0.2 23.0 4.6 1.117 1700 1.614 092 29.3
velocity) 0.4 23.0 92 0.787 1700 1.137 0.59 38.8
3 0.0 23.0 — 1.777 1700 2.568 1.14 10.8
0.1 25.8 2.6 1.777 1700 2.568 1.13 17.2
(Constant 5 30.3 5.8 1777 1700 2.568 0.98 35.7
mass) 0.4 348 13.8 1.777 1700 2.568 0.65 48.1
14
I l |
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Fig, 1. Semi-infinite RHA penetration results: P/L versus T/D.

against striking velocity for the constant geometry cases (Cases 1 and 2) and nominally one-quarter
scale, L/D 10 DU and steel penetrators [16, 17]. Empirical fits to the experimental data have also
been included. The constant mass curve (Case 3) has been omitted because the effects of aspect ratio
could not be adequately accounted for.
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Fig. 2. Comparison of the constant diameter penetrator simulation results to one-quarter scale DU and steel experi-
mental results.

Figure 2 shows that the simulations of the DU and steel penetrators agree quite well with the
experimental results and also illustrates the effects of the competing mechanisms of increasing
velocity and decreasing penetrator density for the constant energy case (Case 1). For the T/D =0.1
sheathed penetrator, the combination of decreasing density and increasing velocity produces
a result not significantly different from a solid DU rod at the same velocity. However, for T/D = 0.2
and beyond, decreasing density has started to dominate as normalized penetration is rapidly
diverging from the DU penetration curve and approaching the steel penetration curve. Thus, the
competing mechanisms of increasing velocity and decreasing penetrator density provides the
nonmonotonic (parabolic) shape seen in the constant energy curve in Fig. 1. Figure 2 also shows
that sheathed penetrator performance never exceeds solid DU penetrator performance even though
Fig. 1 indicated the possibility.

Figure 3 shows the constant energy penetration curve (from Fig. 1) and the theoretical hy-
drodynamic limit as a function of T/D. The hydrodynamic limit! is specified by the square root of
the ratio of the penetrator and target densities, where bulk density is assumed for the sheathed
penetrators. It is interesting to see that in the range of T/Ds between 0.15 and 0.4, performance
exceeds the computed hydrodynamic limit. A possible explanation for this unexpected rise above
the computed hydrodynamic limit follows. Using bulk density to compute hydrodynamic limit
assumes a homogenized material. In reality, a high-density core is surrounded by a lower density

! The hydrodynamic limit is a theoretical limit that is obtained only for very high velocities (where the inertial terms are
much larger than any material strength effects) and for very high L/D penetrators so that steady-state effects dominate the
transient contributions at the beginning and end of the penetration process.
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Fig. 3. Comparison of normalized jacketed rod penetration and the hydrodynamic limit (based on bulk density).

material. This material arrangement is apparently more efficient than the smeared density assump-
tion gives credit for; so performance is increased beyond what the hydrodynamic limit, based on
bulk density, would predict. This is supported by Ekbom’s et al.’s [4] proposal that a high-density,
high-compressive-strength core be inserted into a thick, high-density jacket to advantageously
modify target flow behavior, thereby increasing penetration.

In addition to bulk penetrator density, striking velocity appears to effect penetration character-
istics as T/D varies. This is seen in Fig. 4 where the constant velocity and constant energy curves in
Fig. 1 have been normalized by DU performance. Here, the penetration of each simulation was
normalized by the penetration that a solid DU rod would have at the same velocity. If sheathed
penetrator performance was insensitive to velocity, the constant energy and constant velocity
curves should be very similar using this normalization scheme. This is not the case since increasing
velocity seems to increase the performance of the sheathed rods. One argument is that higher
velocities create a larger diameter crater, creating more room for the sheath and erosion products,
decreasing the burden of the sheath. Regardless of the reason, the process appears to be quite
complex and sophisticated models will be required for further analyses.

2.1.2. Finite thickness target penetration at normal incidence

Table 4 indicates that the 150 mm RHA target is clearly overmatched by all projectile configura-
tions considered. Again the thinnest of the sheath thicknesses considered (T/D = 0.1) provides the
best performance with regard to residual mass and residual KE. Performance then appears to
degrade as sheath thickness is increased.

The 250 mm RHA target provides more of a challenge for the projectiles. The baseline DU rod
perforates the target with a residual velocity of 1,050 m/s and a residual length of 20 mm, while the
projectile with the smallest sheath thickness perforates with a residual velocity of 930 m/s but
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Fig. 4. Semi-infinite RHA penetration results normalized by expected monolithic DU penetration at equal velocity.

a considerably larger residual length of 30 mm. The residual energy of the sheathed projectile is
again higher than that of the DU rod. Thus, there is an interesting trade-off here in terms of
lethality. A thin sheath produces a residual penetrator moving at a slower velocity compared to
that of a DU rod but possessing considerably more mass.

Even though penetrator aspect ratio varies for the 250 mm target, the fact that the 7/D 0.2 and
0.4(L/D 7.9 and 6.6) penetrators did not perforate the target permits further analysis. By examining
residual energy, only the T/D 0.0 and 0.1 results apply, and since the performance difference
between L/D 10 and 8.9 penetrators is relatively small, the difference in aspect ratio can be ignored.

The residual energy data from Table 4 is plotted in Fig. 5 for both the 150 and 250 mm targets.
Since penetrator mass was not constant for the 150 mm target, residual energy has been normalized
by impact energy. This figure illustrates that a T/D = 0.1 sheath will maintain a larger percentage
of the rod’s initial energy after perforation.

2.1.3. Finite thickness target perforation at oblique incidence

Figures 6(a) and (b) depict the state of a DU and sheathed (7/D = 0.1) penetrator, L/D = 10,
350 ps after impact of a 25.4 mm RHA target at 68° obliquity with a striking velocity of 1700 my/s.
Residual lengths and velocities are approximately the same, but the sheath serves to inhibit
bending to a considerable extent. Thus, a thin sheath could prove useful in enhancing the
effectiveness of projectiles with intermediate L/D ratios, ie., 5 < L/D < 15.

The calculation was repeated with rods having an L/D of 30. For this length, there was no
discernible difference between sheathed and bare rods at 350 s after impact. One theory for the
different response is that the increased length reduced the number of wave reflections occurring
before 350 ps, effectively decreasing the amount of time for deflections to occur. If the calculation
were permitted to run longer, the response between the short and long penetrators may have been
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Table 4
Finite RHA penetration results
T/D Rod Sheath Rod Striking Impact Residual Residual Residual
diameter thickness mass velocity energy velocity length energy
(mm) (mm) (kg) (m/s) MJ) (my/s) (mm) MJ)
Case 4: 150 mm RHA — constant velocity and diameter
0.0 23.0 0 1.777 1700 2.568 1530 92 0.832
0.1 23.0 2.3 1.406 1700 2.032 1500 97 0.667
0.2 23.0 4.6 1.117 1700 1.614 1370 89 0.406
04 23.0 9.2 0.787 1700 1.137 600 52 0.032
Case 5: 250 mm RHA — constant velocity, mass, and energy
0.0 23.0 0 1.777 1700 2.568 1050 20 0.085
0.1 25.9 2.6 1.777 1700 2.568 930 30 0.100
0.2 29.0 5.8 1.777 1700 2.568 0.0° 30 0
0.4 34.6 13.8 1.777 1700 2.568 0.0° 75 0
? Limit velocity.
® Partial penetration.
14 , ’ ’ 35
l—’—’_ O  150mm RHA, Residual Energy
1.2 0O 250mm RHA, Residual Energy |4 30
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g 1.0 8 250mm RHA, % of Striking |4 25 B
5]
B 08 = 2 8
& \ &
0 96 < 15 —g
E &
2 04 \9\ \ 10 8
QL ' \ -]
(4 x
0.2 s B \\ 5
0.0 \T 0
0.0 0.1 0.2 0.3 0.4

T/D

Fig. 5. Residual penetrator kinetic energy versus T/D for the finite RHA perforations.

more similar. However, in the real world of high-aspect-ratio penetrators and compact armors, the
result indicating no difference in shape between the monolithic DU and the jacketed penetrators

could be expected for this target.

A conclusion can be made from these results that, from the standpoint of terminal ballistics,
a thin sheath may marginally improve penetrator performance. At worst, it will not significantly
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Fig. 6. DU and T/D = 0.1 jacketed rods 350 ps after striking a 254 mm RHA plate at 60°.

degrade it. Sheaths have been used traditionally on projectiles with weak cores to ensure integrity
during launch and flight. Hence, the payoff for sheathed penetrators may lie in areas other than
penetration.

3. Penetration modeling

Since resources were not available to conduct an experimental terminal ballistic program to
validate the simulation results, the results from Section 2.1.1 were expanded and used to develop
a semiempirical penetration model for steel sheathed DU penetrators. The successful completion of
this effort will not only provide a useful model, but also increase the confidence in the simulation
results until experiments can be performed. The additional simulations were performed at striking
velocities of 1.2 and 3.0 km/s using the same assumptions discussed in Section 2.1. Penetrator
geometry was kept constant except for varying jacket thickness. All of the simulation results to be
used for model development are listed in Table 5.

A generic penetration model for sheathed penetrators has been developed using Frank’s
extension of the Lanz-Odermatt penetration function as related to the Alekseevskii-Tate penetra-
tion parameters [18]. Frank’s formulation of the Lanz—Odermatt function is a two-parameter,
exponential fit relating striking velocity to normalized, semi-infinite penetration [see Eqn (1)].
Values for a and b can be determined from a set of experimental data provided that the range of
penetrator aspect ratios and scale is appropriate and a sufficient range in velocity exists. The
veracity of this form has already been demonstrated in Fig. 2 by fitting the DU and steel
experimental data. Figure 7 illustrates the result of fitting the simulation results (open symbols and
dashed lines) to Eqn (1) as well as the experimental data (solid symbols and lines). The resultant
values for a and b are listed in Table 6.

P b*
E -aexp(—;;). (1)
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Table 5
Semi-infinite penetration results
T/D Rod Striking Impact P/L Striking Impact P/L
mass velocity energy velocity energy
(kg) (m/s) (MJ) (m/s) M)
0.0 1.777 1700 2.568 1.14 1200 1.279 0.68
0.1 1.406 1911 2.568 1.24 1200 1.012 0.59
0.2 1.117 2144 2.568 1.26 1200 0.804 0.43
04 0.787 2555 2.568 1.03 1200 0.567 0.21
0.5 0.745 2626 2.568 0.88 1200 0.536 0.18
0.0 1.777 1700 2.568 1.14 3000 7.997 1.62
0.1 1.406 1700 2.032 1.09 3000 6.327 1.59
0.2 1.117 1700 1.614 0.92 3000 5.027 1.54
04 0.787 1700 1.137 0.59 3000 3.541 1.20
1.8 T I
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1 ; // -~ - .
-~ i
2 e -
4 -—
Ve -
1.0 PP sl 4 = e sl a1
. s —
S 08 s P o |
. / 7 ‘/ / P -
7 s ~
0.6 / — D |
0.4 Vi / -’ / o 0-0 ||
' ’/ V4 P = o 0.1
7z 2 a 02
02 P _ _(_b_) v 04 H
= ex .
t=en (-(3)") y 4
0.0 ' .
1.0 1.5 2.0 2.5 3.0 35
Striking Velocity (km/s)

Fig. 7. P/L versus velocity for the simulation and experimental data. Curve fits are provided for both the simulation and
experimental data sets.

The form of Eqgn (1) fits both the experimental and simulation data well. For the DU experi-
mental data, a very good median curve is provided for the limited and slightly scattered data.
However, in the case of the steel experimental data, an exceptional fit is provided for a range of
velocities from 1.0-3.5 km/s. For the simulation data, each curve represents the data quite well, the
curves do not cross and an interesting trend becomes obvious. At high velocities, the performance
of the thinner jacketed penetrators approaches that of a DU penetrator and the performance of
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Table 6
Results of a two-parameter, exponential fit to the experimental and simulation penetration data
DU Steel T/D = 0.0 T/D = 0.1 T/D =02 T/D =04 T/D =05
a 1.940 1.313 1.902 1.934 1.976 1.652 1.349
b 1.182 1.659 1.213 1.296 1.475 1.730 1.710

thick jacketed penetrators diverges from that of a steel penetrator, further evidence that perfor-
mance may not be driven entirely by bulk density. Finally, comparing the curve fits of the
monolithic rods (i.e., simulation versus experimental for T/Ds of 0.0 and 0.5) shows that the steel
experimental and simulation curves are very similar, which is not the case for the DU where the
simulation curve appears to be offset from the experimental curve. Although the DU simulations
appear to compare well with the DU experiments, the simulation results were always on the lower
boundary of the experimental results, resulting in the consistent shift of the two curves. Previous
work by Zook and Magness (unpublished data) also demonstrated this trend of the DU simula-
tions slightly under predicting penetration when compared to this same experimental data.
With what appears to be a pattern in the simulation results, the task at hand is to find it and
develop a model. After a detailed examination of Table 6, the parameters appear of little value
directly because additional physical parameters governing the penetrator-target interaction are
embedded in the two parameters. However, some insight can be gained by comparing the results of
Eqn (1) with results similar to that of Alekseevskii—Tate model, which describes the interaction
process with four basic parameters: the penetrator and target flow shape factors k, and k,, and, the
penetrator and target material “strength” (flow stress) values Y and H (see Eqns (2a) and (2b)). In
Odermatt’s formulation, o represents an expression for aspect ratio, which approaches one as
aspect ratio exceeds 20. (In this paper, « represents a free variable, embodying aspect ratio and
other late time effects.) Thus, for long rod penetrators (L/D > 20), if k, and k are assumed equal
(typically k, and k, are assumed to be 0.5), term a may simplify to the expression for the
hydrodynamic limit. The term (H — Y)/(k,p;) is the square of the cutoff velocity, relating the
b term to penetrator/target interaction as well.
ko Pp :
a=auxa kp,’ (2a)

kop, \(H—Y
b2=<1 + =B ")( ) 2b
k. p, kppp (2b)

Even though the parameters in the empirical model have been related to analytic functions, the
model must be adapted to the case at hand before it can be useful. An inventory of the variables in
Eqns (2a) and (2b), referenced against available information, results in five unknowns, Pp> ko, ki,
x and the term (H — Y'). This assumes that target density is known and that the terms a and b can
be determined (Table 6). By using a homogenized (bulk) penetrator density, k, and k, can then be
computed from the simulation results once « and (H — Y') are specified. Using these values for
k, and k., functions (curve fits) with respect to T/D can be obtained, which then permit a and b to be
computed for any T/D.
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If the previous assumption that k, and k, should be equal and near 0.5 is continued for
monolithic penetrators striking RHA, then Eqns (2a) and (2b) and the data from Table 6 can be
used to determine « and (H — Y ) for both DU and steel. Inserting the a and b terms resulting from
the exponential fits of the small scale, L/D 10, experimental data into Eqn (2a) yields values for « of
1.26 and 1.31 for DU and steel penetrators, respectively. Solving Eqn (2b) yields values for (H — Y)
of 5.1 and 5.3 GPa, respectively. Since (H — Y) for DU rods impacting steel targets has been
reported to be in the range of 4-5 GPa, and for steel versus steel, (H — Y) can be up to 1 GPa less
[19], the value of 5.1 GPa for DU rods is certainly reasonable, but the value of 5.3 GPa for steel
rods appears to be inconsistent. This discrepancy could be caused by the assumption that
k, =k, = 0.5 for both DU and steel rods. If « is assumed constant at 1.26 and (H — Y) to be
4.1 GPa for steel rods, then k, = 0.39 and k, = 0.36 for the steel data, making k, and k, nearly equal,
but approximately 25% smaller than for DU. Since little is known about k, and k,, using a linear
function in (T/D) for (H — Y) is a good starting point, i.e.,

(H — Y)%}:s.l —2@) (3)

where the brackets on the left-hand side of Eqn (3) denotes that (H — Y) is a function of T/D.

Once functions for o and (H — Y){T/D} are assumed, sufficient information exists to determine
expressions for k, and k, as a function of T/D for the simulation data. Two options exist for
determining the expressions for k, and k, as functions of T/D: use the simulation data for the
jacketed rods (T/Ds = 0.1, 0.2, and 0.4) and a second-order curve fit; or, use all of the simulation
data (T/Ds = 0.0, 0.1, 0.2, 0.4, and 0.5) and the appropriate curve fit. The first option groups like
simulations of the composite rods to generate a model that extrapolates to the monolithic rods and
the experimental data, while the second method uses a larger data set. Instead of discussing the
merits of each option, both will be investigated.

Starting with the assumptions that o is constant at 1.256 and that (H — Y){T/D} =
5.1 — 2(T/D), k, and k; can be computed from the a and b terms in Table 6. The results are plotted
in Fig. 8 where the simulation data are seen as open symbols and the experimental data as the filled
symbols. The solid curves represent second-order least square fits to the k, and k, data for the
jacketed rod simulation data only (T/D = 0.1, 0.2, and 0.4). The broken lines are second- and
third-order fits to all five of the simulation k, and k, data points. Several observations can be made
from Fig. 8. First, the agreement between the experimental and simulation results for k, and k, at
T/Ds of 0.0 and 0.5 is quite good. Second, the solid curves fit the data very poorly. And third, while
the second-order fit to all of the simulation data provides adequate results (a maximum error of
10%), the third-order fits are clearly better. Since the curves obtained from the jacketed rod data
only (solid curves) are clearly inadequate, this method of obtaining functions for k, and k, will be
dropped from further consideration.

Using the functions just obtained for k, and k, (fits to all five data points), Eqn (1) can now be
solved to compute P/L as a function of striking velocity and T/D, the results of which are plotted in
Fig. 9. Here again, the solid symbols and lines represent the experimental data and curve fits
whereas the open symbols represent simulation results and the broken lines the resulting penetra-
tion model from Eqns (1) and (2). The first, and most important observation, is that the model
appears to have captured the major elements in predicting penetration. Although there are
some discrepancies, the model matches both the simulation and experimental data quite well.
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Fig. 8. Resulting k, and k, values using a and b parameters from Table 6, Eqns (2a) and (2b), and values of 1.256 for « and
(H—Y){T/D} =5.1—2(T/D).

Furthermore, while the two plots appear quite similar, there is an important difference to note.
Comparing the exponential curve fits to the simulation data in Fig. 7 with the curves resulting from
the penetration model in Fig. 9, it is seen that the T/D 0.0 curve intersects the T/D 0.1 curves in
Fig. 9 instead of converging at high velocity as seen in Fig. 7. However, the velocity at which the
intersection occurs increases and the amount of divergence decreases as the fits to the k, and k, data
improve.

To thoroughly examine linear functions of (H — Y){T/D}, the function (H — Y){T/D} =
5.1 — x(T/D) was studied where x was varied to return values for (H — Y){0.5} between 1 and
7 GPa. For each (H — Y){T/D}, the associated standard and average errors between the data and
the penetration model were computed and examined for both the second and third order fits to
k, and k,. These results showed that the errors were minimized for values of (H — Y){0.5} in the
range of 3.5 to 4.0 GPa, agreeing with previous statements about (H — Y){T/D} and supporting
the use of (H — Y){T/D} = 5.1 — 2(T/D). Furthermore, these errors (Table 7) indicate that the
model is matching the data extremely well.

In an attempt to provide additional improvement to the penetration model, the constraint on
(H — Y){T/D} being linear was relaxed. A family of second-order curves was examined where two
conditions were met: o and (H — Y){0} were set to keep k, =k, =05 for T/D =0 and
(H—Y){0.5} =(H — Y){0} — 1. The resulting k, and k, data that produced the best penetration
results are displayed in Fig. 10. Comparing Figs 8 and 10, k, and k, are the same for T/D = 0.0 and
0.5 but different elsewhere, in fact, the k, curve has inverted. Examination of the errors in Table
7 indicates that the penetration results for a second order (H — Y){T/D} are no more accurate
than the linear function for (H — Y){T/D}, however, plots of the penetration results show that the
constant T/D lines do not cross at high velocity, but converge as seen in Fig. 7, providing the best
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Fig. 9. Penetration model results using the better sets of k, and k, functions displayed in Fig. 8.(a) Second order fit to all
of the simulation results. (b) Third order fit to all of the simulation results.

combination of results so far. However, to obtain this result, (H — Y){T/D} uses values as low as
3.9 GPa (Fig. 11). If values of 5.1 and 4.1 GPa for (H — Y){T/D} at T/Ds of 0.0 and 0.5 are
appropriate, an argument could be made that for T/Ds between 0.0 and 0.5, (H — Y){T/D} should
be bounded by its values at T/Ds of 0.0 and 0.5. However, given the assumptions made already and
how little is known about the actual values of k, and k,, (H — Y){T/D} was permitted to have small
excursions beyond the limits set by T/Ds of 0.0 and 0.5.

Returning to the issue of appropriate assumptions, first consider that bulk density is used in the
analysis and that previous discussion indicated that this assumption may not accurately predict
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Table 7
Resulting standard and average errors between the data and the penetration model for various input options

Type of Order of CTH? DU Steel®

(H—-Y){T/D}  k,, k fit

function Standard Average Standard Average Standard Average
error error error error error error
(%) (%) (%) (%) (%) (%)

Linear 2 0.021 1.8 44 23 1.8 2.3

Linear 3 0.014 1.3 49 1.2 1.1 1.4

2nd order 2 0.012 1.9 42 22 22 22

2nd order 3 0.027 1.4 48 1.4 14 1.4

2 Error between the model and the CTH simulations used to generate the model.
®Error between the model and the experimental data.
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Fig. 10. Resulting k, and k, parameters using a second-order function for (H — Y){T/D}.

penetration performance. Using the simulation results from Fig. 7, the velocity at which P/L equals
the hydrodynamic limit can be determined for both T/Ds of 0.0 and 0.5. (For this discussion,
hydrodynamic limit is defined by the square root of the density ratio.) Using these velocities,
2653 m/s for T/D = 0.0 and 3117 m/s for T/D = 0.5, to construct a line, one could argue that the
velocity for which P/L equaled the hydrodynamic limit for any other T/D would lie on the line (see
path 1in Fig. 12). By making this assumption and also assuming that target density is constant, an
effective penetrator density can be computed for any T/D. These results are found in Table 8 and
Fig. 13, clearly illustrating that the bulk density assumption is not sound. In addition to the
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Table 8

Bulk and effective density comparison

T/D 0.0 0.1 0.2 0.4 0.5
Bulk density (kg/m?) 18,600 14,712 11,688 8232 7800
Hydrodynamic limit 1.544 1.373 1.224 1.027 1.000
(bulk density assumption)

Hydrodynamic limit 1.543 1.493 1.435 1.159 1.000
(from linear interpolation)

Velocity (m/s) 2653 2692 2775 3022 3117
Effective density (kg/m?) 18,600 18,322 17,266 11,054 7800

straight line (path one in Fig. 12), three nonlinear cases are also presented to further demonstrate
that due to material orientation, bulk density does not reflect performance accurately and to show
that the effective density is relatively insensitive to the path, or hydrodynamic velocity profile,
chosen. Furthermore, the shape of the effective density curves are consistent with arguments made
in Section 2.1.1.

At this point, an argument could be supported that the effective densities listed in Table 8 should
be used for penetrator density in Eqn (2b) instead of bulk density. However, making this substitu-
tion had little effect on the resulting penetration model, and since bulk density is a known quantity,
its use remains more attractive (within this model) than an expression for effective density.
Nevertheless, valuable insight could be gained by examining the subtleties of changes like using
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profiles.

effective density in place of bulk density; because in this case, the resulting k, curve is nearly the
same as the k, curve as T/D varies from 0 to 0.5 and this relationship is maintained whether
(H—Y){T/D} is concave up or down. Small details like this may become important in the
understanding of the underlying principles of the penetrator and target shape factors and strengths
as more data becomes available.
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Fig. 14. Resulting curves from the “best” set of inputs to the jacketed rod penetration model.

Returning to the issue of the best input parameters, the following statements can be made after
examining all of the information. First, the simulations are in agreement with the experimental
data. Second, the semiempirical model described by Eqns (1) and (2) provides an exceptional fit to
the experimental and simulation data. And third, regardless of the function used for
(H — Y){T/D}, the resulting errors between the model and the data are about the same. Although
the different forms of (H — Y){T/D} return similar errors, they do not return the same result, and
since the results from the cases studied provide similar errors (Table 7), appearance of the resulting
model, or more specifically, asymptotic lines of constant T/D become the deciding factor in
determining the best set of inputs to the model. Therefore, a second-order expres-
sion for (H — Y){T/D} was selected, and even though the second-order functions fitting the k,
and k, simulation data points are physically more attractive because of their lower order, the
third-order functions were selected since they fit the data better. The resulting penetration
model is displayed in Fig. 14 and the functions representing (H — Y){T/D}, k,, and k, in
Eqns (4a)-(4d).

Even though many assumptions were made and the underlying model contains only
two parameters, the simulation data incorporates into the proposed model [Eqgns (1), (2),
and (4a)-(4d)] extremely well. The transition from DU rods to steel rods via increasing
Jacket thickness is smooth and agrees with intuition. Furthermore, the ability of a two-
parameter fit to capture the penetration phenomena over a large velocity range is clearly sup-
ported, especially by the steel experimental data. Arguments on the appropriate shape of
the (H — Y){T/D}. k,, and k, curves with respect to T/D can be investigated further, but as
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demonstrated within this document, it is safe to say that they are not constant and represents an
area for future research.

o« = 1.256, (4a)
(H — Y)(%): 10(%)2 —7<%>+5.1, (4b)
k,,(%) = 2911 (-E)g ~ 1.865(%)2 + 0.012(%) + 0471, (4c)
k, (%) = 3.489 (g)s + 0.310@)2 —1.357 (%) +0.490. (4d)

4. Conclusions

A multiphase computational study was performed to examine the systemic effects of placing
a jacket (sheath) on a long rod KE penetrator. Part one of the initial phase examines the
penetration of finite and semi-infinite RHA targets by DU penetrators with steel sheaths. The
computaional results support the following two conclusions: (1) To minimize penetration degrada-
tion, the sheath must be thin, T/D < 0.1; sheath thicknesses of T/D = 0.2-0.3 may be possible if the
striking velocity is increased; (2) a thin sheath may slightly increase the residual energy of the
penetrator after the target is perforated. However, as stated, these findings are based on computa-
tions only, experimental confirmation remains to verify these results due to the small differences
supporting the conclusions.

In the later phases of the study, a general penetration model was developed. A two-parameter,
exponential function proposed by Lanz and Odermatt was modified to include penetrator and
target shape factors and penetrator and target strengths. This form fit the simulation data
extremely well and also extrapolated to monolithic DU and steel experimental data. The penetra-
tion model used a bulk density assumption which was shown to be questionable and requires
additional investigation once the simulation results are verified by experiments. Regardless of the
assumptions, the model is simple, elegant, and quite useful to identify regions where more detailed
investigations could be profitably made, and flexible enough to be adapted as new information
becomes available. Finally, further computational and analytical modeling supported by experi-
mentation of jacketed rods could provide a method for detailed observation of the important, but
ill defined, k, and k, parameters.
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