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Abstract

The main objective of the present work is to describe normal penetration of a deformable projectile into an
elastic}plastic target. The force imposed on the projectile by the target is generally a complex function of the
strength of the target material, the projectile velocity, its diameter and shape, as well as the instantaneous
penetration depth. When this force exceeds a certain critical value the projectile begins to deform. At
moderate-to-high values of the impact velocity, the projectile's tip material #ows plastically with large
deformations causing the formation of a mushroom-like con"guration. This process is accompanied by
erosion of the projectile material. In the rear (`elastica) part of the projectile the deformations remain small
and the region can be approximated as a rigid body being decelerated by the projectile's yield stress.
The general model allows one to predict the penetration depth, the projectile's eroded length and the
crater diameter. It has been shown that in the limit of very high impact velocities the present model reduces to
the well-known form of the hydrodynamic theory of shaped-charge jets. Also, a simpli"ed asymptotic
formula for the crater radius has been derived which includes the e!ect of the target's yield stress and
compares well with experimental data for very high impact velocities. � 2001 Elsevier Science Ltd. All
rights reserved.

1. Introduction

A number of di!erent models have been developed to analyze the penetration process which
focus attention on di!erent ranges of impact velocity. For relatively high impact velocities the
projectile and target materials #ow like #uids, with the in#uence of their yield strengths being
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negligibly small compared to inertial e!ects. This allows one to develop a hydrodynamic theory of
penetration of the type considered in [1}3]. In these works, both the target and projectile are
modeled as inviscid #uids with purely inertial resistance to deformation. Alternative models,
considered in [4}6], modify the Bernoulli equation by adding plastic terms proportional to the
yield strengths of the target and projectile.
In the time-dependent model of [7], some assumptions are made concerning the velocity and

stress pro"les in the projectile and the target. The axial momentum equation is integrated along
the projectile and target axes and the initial interfacial velocity is found from the shock jump
conditions. This model also uses empirical data for the crater diameter as a function of the
projectile's initial velocity.
Another method uses an integral work rate balance to predict penetration of a rigid or

deformable/eroding projectile into a rigid-plastic target. In this method, the velocity "eld is
assumed to take di!erent functional forms in several di!erent target domains and the work rate
balance is used to determine various coe$cients. This approach was exploited to predict penetra-
tion of a rigid blunt cylindrical projectile in [8] and deformable projectiles in [9,10].
The approach in [11}13] allows one to signi"cantly improve the characterization of the velocity
"eld in the target and projectile. Speci"cally, the velocity "eld is assumed to be an irrotational "eld
that is derived from a velocity potential.
The main objective of the present work is to develop an approximate solution of the problem of

normal penetration of a deformable projectile into a semi-in"nite elastic}plastic target. Here, the
approach developed in [14,15] for rigid projectiles is generalized to include projectile deformation
and mass loss. Again, the model uses an irrotational velocity "eld which corresponds to the motion
of an ovoid of Rankine penetrating an elastic}plastic target. The target region is subdivided into an
elastic region ahead of the projectile and a rigid-plastic region near the projectile. The momentum
equation is solved exactly (when the radius of the ovoid is constant) in both the elastic and
the rigid-plastic regions to "nd expressions for the pressure and the stress "elds. The e!ects
of the free front surface of the target are modeled approximately, and the force applied to the
projectile is calculated analytically. Moreover, the model can be generalized without di$culty to
include the e!ects of the free rear surface of "nite thickness targets along the lines discussed in
[14,15].
At moderate-to-high impact velocities it is assumed that plastic #ow takes place in the whole tip

region of the projectile. This process is accompanied by erosion of projectile material (Projectile
Erosion: Mode PE). Mode PE is kinetically impossible at smaller projectile velocities, which are
not considered in the present work.
In the following, expressions are developed for the pressure and the stresses in the target and

projectile regions for Mode PE. Then, the balance of linear momentum in the target region, and in
the deformed and rigid regions of the projectile, as well as at the plastic wave front are considered.
The boundary conditions associated with the free front surface of the target, the free surface in the
crater region that develops near the projectile, the target/projectile interface and the plastic wave
front are satis"ed approximately.
This paper is organized as follows. Section 2 describes the formulation of the model and

Section 3 describes the projectile erosion mode (Mode PE). Section 4 presents the initial conditions
and Section 5 discusses the solution procedure and comparison of the theoretical predictions with
experimental data. Finally, Section 6 presents conclusions.
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2. Description of the model

2.1. Basic assumptions

The target material is assumed to have a constant density �
�
, the projectile material is assumed

to have a constant density �
�
and both remain incompressible. This means that the conservation of

mass and the balance equation of linear momentum have the forms

� ' v"0, (2.1a)

�vR "!�p#div��, (2.1b)

where the gradient operator � and the divergence operator div are de"ned with respect to the
current position of a material point, and v is the absolute velocity of a material point. The Cauchy
stress � has been separated into a pressure p and its deviatoric part ��, such that

�"!pI#��, (2.2a)

�� ' I"0, (2.2b)

where I is the unit tensor and A 'B"tr(A�B) denotes the scalar product between two tensors A
and B.
At the instant when the projectile touches the target's front surface, the target material begins to

deform elastically. However, at some point during the penetration process the target material
begins to deform plastically and an elastic}plastic boundary propagates away from the projectile's
tip. In the elastic region the strains remain small, whereas in the plastic region the strains can be
very large. Furthermore, for simplicity it is assumed that the material response in the plastic regions
is rate-insensitive and rigid-plastic so that the deviatoric stress can be approximated by

��"�
2
3�

��� >
(D 'D)���

D, (2.3)

where> is the constant yield stress in uniaxial tension (with>">
�
for the projectile and >">

�
for the target) andD is the symmetric part of the velocity gradient. Also, in the elastic region of the
target it is assumed that the material response is linear elastic and isotropic so that for isochoric
motion the deviatoric stress is related to the linear strain tensor � by

��"2��, (2.4)

where � is the constant shear modulus.

2.2. Velocity xeld in the target and the shape of the target/projectile interface

Consider a cylindrical coordinate system with coordinates �r, �, z�, base vectors �e
�
, e� , e��, and

a "xed origin at the initial location of the front free surface of the target. The tip S of the eroding
mushroom-like part of the projectile is located at z"x(t).
It is convenient to divide the target and the projectile into four regions separated by the

boundaries (see Fig. 1) z"z
�
P!R associated with the target's rear surface; z

�
associated with

the elastic}plastic boundary in the target; z
�
associated with the point S at the projectile's tip;
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Fig. 1. De"nition of di!erent regions in the target and the projectile. (1e) elastic region in the target; (1p) plastic region in
the target; (2) plastic region in the projectile; (3) rigid region in the projectile. An ovoid of Rankine is proposed as a good
approximation of the interface between regions (1p) and (2).

z
*
associated with the separation point of the target material from the projectile material; and

z
�
associated with the rigid-plastic boundary in the projectile.
Point S with coordinates (z

�
"x, r"0) shown in Fig. 1 moves with velocity ; so that the

location of the projectile's tip is determined by the equation

xR "!;. (2.5)

Moreover, since the projectile's tip deforms, the velocity; is smaller in magnitude than the velocity
< of the projectile's rear part (region 3 in Fig. 1). The shape of the interface between the projectile
and target material is approximated by an ovoid of Rankine with a variable radius R

�
at in"nity.

This form is associated with a combination of the potentials of a single source and a uniform #ow.
It can be shown that this surface which is de"ned by r"R can be expressed in the parametric forms
[14}17]

�"�(R)"
2R�!R�

�
2(R�

�
!R�)���

, (2.6a)

r"R(�)"�
R�

�
!��

2
#

�
2
(��#2R�

�
)����

���
, (2.6b)

�"z!x!

R
�
2

, (2.6c)

where � is a coordinate measured relative to the source.
The #ow "eld in the target (in regions 1e and p in Fig. 1) about the ovoid of Rankine is

characterized by the velocity potentials

����
�

";R
�

�M ���, (2.7a)

�M ���"�M !
1

4(�M �#r� �)���
, (2.7b)
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where the non-dimensional axial and radial coordinates �M and r� are de"ned by

�M "
�

R
�

, (2.8a)

r� "
r

R
�

, (2.8b)

����
�

is the potential of the velocity "eld (relative to the system of coordinates associated with the
interface surface) satisfying the continuity equation. The condition of impenetrability at the
interface is satis"ed exactly when R

�
remains constant but only approximately when R

�
varying

with time. In this regard, it is noted that the length of the crater observed in a ballistic experiment
usually signi"cantly exceeds the change of the projectile diameter. Moreover, these craters are
nearly cylindrical in shape. Therefore, the rate of change of R

�
with time is neglected in

determining the velocity and stress "elds and the velocity "eld (2.7) is considered as quasi-
stationary relative to the time derivative of R

�
.

The above potential (2.7) relative to a point at rest in the target can be written as

�
�
"!;�#����

�
"!

;R
�

4(�M �#r� �)���
(2.9)

and the corresponding radial v
��

and axial v
��

components of the absolute velocity "eld in the
target are given by

v
��

";R�
��

r
4(��#r�)����, (2.10a)

v
��

";R�
��

�
4(��#r�)���� (2.10b)

in both the elastic and plastic regions.
The main part of the velocity "eld used in the present work is associated with a source term

which introduces a spherical component to the #ow in the target due to a source that moves with
the penetrating projectile. The justi"cation for such a component follows from geometrical
considerations related to impenetrability of the projectile surface. As was shown in [14,15],
the velocity "eld (2.10) satis"es impenetrability of the projectile exactly if the projectile has
the shape of an ovoid of Rankine and R

�
is constant. An analytical approximation of the velocity

"eld possessing a spherical component has also been introduced in [7] based on the results of
numerous numerical simulations of the penetration process. Therefore, the kinematics in the target
assumed in [7] is quite similar to that of [14,15] and the present work. In particular, the velocity
component v

��
is proportional to �}� ahead of the projectile in the present work as well as in

[7,14,15].

2.3. Stress xeld in the target

Details of the analysis in the target can be found in the previous works [14,15]. In particular,
using the velocity "eld (2.10) it can be shown that the rate of deformation tensor D

�
in the
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target becomes

D
�
"

;R�
�

4(��#r�)	���(��!2r�)e
�
�e

�
#(��#r�)e��e�#(r�!2��)e

�
�e

�

!3r�(e
�
�e

�
#e

�
�e

�
)�. (2.11)

Thus, due to (2.3), the deviatoric stress ��
�
in the target's plastic region, corresponding to the

velocity "eld (2.10), can be written in the form

��
�
">

�
�� �, (2.12a)

�� �"
1

3(��#r�)�(��!2r�)e
�
�e

�
#(��#r�)e��e�#(r�!2��)e

�
�e

�

!3r�(e
�
�e

�
#e

�
�e

�
)�. (2.12b)

Furthermore, using (2.12) it can be shown that

div�� �"��!ln�
��#r�

R�
�
��. (2.13)

This result indicates that the balance of momentum equation can be solved exactly in the plastic
zone of the target to obtain an expression for the pressure p

�
in the target of the form

p
�
"f

�
(t)!�

�
;��

R�
�

�
4(��#r�)���

#

R

�

32(��#r�)��
#�

�
;Q R

��
R

�
4(��#r�)����!>�

ln�
��#r�

R�
�
� , (2.14)

where the function f
�
(t) depends on time only and has been determined in [14,15] by a matching

condition at the elastic}plastic boundary in the target. For the case of a semi-in"nite target this
function can be written in the form

f
�
(t)">

�
ln �	 �

�
. (2.15)

Also, in (2.14) the time rate of change of R
�

has been neglected.
Due to the similarity of the velocity "elds in [7,14,15] and in the present work, the pressure

p
�
predicted by (2.14) and (2.15) near the projectile's tip is quite close to the one predicted by

Eqs. (8), (26), (43) in [7] (where some additional assumptions were made).
In Eq. (2.15), �

�
is the coordinate of the intersection of the elastic}plastic boundary with the

projectile axis. This elastic}plastic boundary is determined by the values of r and � which cause the
solution in the elastic region to satisfy the von Mises yield condition. In particular, the value of
�
�
associated with the intersection of the elastic}plastic boundary with the axis r"0 can be

determined analytically as a function of x by solving a quartic equation of the form (the detailed
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derivation of this equation and the solution in the elastic region can be found in [15])

�I 

�
#2x
 �I �

�
#x
 ��I �

�
!2x
 �I

�
!x
 �"0, (2.16a)

�I
�
"�

4>
�

3�
�
�

���
�M
�
, (2.16b)

x
 "�
4>

�
3�

�
�

���
x� , (2.16c)

x� "
x

R
�

. (2.16d)

Using expressions (2.12) and (2.14), the stress at the target/projectile interface can be expressed in
terms of the vectors �n, e� , ��

�
�
"�

���
n�n#����e��e�#�������#�

��� (n��#��n), (2.17a)

�
���

"!p
�
#>

��
(!8#9RM �)
3(4!3RM �) �, (2.17b)

����"!p
�
#

>
�
3
, (2.17c)

����"!p
�
#>

��
(4!6RM �)
3(4!3RM �)�, (2.17d)

�
���">

��
!2RM (1!RM �)���

(4!3RM �) �, (2.17e)

p
�
"f

�
(t)#�

�
;��

(1!3RM �)(1!RM �)
2 �#�

�
;Q R

��
(1!RM �)���

2 �#>�
ln[4(1!RM �)],

(2.17f )

where n and � are the outward unit normal and unit tangent to the interface and e� is the
circumferential unit vector normal to n and �.
Note, that accounting for the e!ect of RQ

�
on the time derivative of the potential �

�
leads to the

following additional term �p in the expression for the pressure at the target/projectile interface:

�p";RQ
�

Q(RM ), Q(RM )"(1!RM �)���!

2RM 
!3RM �#1
2

. (2.18)

However, the rate of change of the projectile radius RQ
�
does not a!ect the velocity "eld de"ned by

(2.9) directly. In particular, asRM P1 the radial velocity does not approachRQ
�
as would be expected

for cylindrical cavity expansion. This means, when RQ
�

O0 then the velocity "eld does not satisfy
the condition of impenetrability of the target and projectile interfaces. In spite of this physical
de"ciency, the e!ect ofRQ

�
is assumed to be small so term (2.18) is neglected even thoughR

�
will be

allowed to vary with time.
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In view of the discussion in [14,15], the e!ect of �
�� is neglected on the value of the axial force

applied to the target/projectile interface. Thus, the force is given by

F"!2
R�
��

�M H

�

�
��
(RM )RM dRM , (2.19a)

RM
H

"

R
H

R
�

, (2.19b)

where RM
H
is the radius of the separation point at the target/projectile interface which is determined

by the condition that the normal stress �
��
vanishes at this interface. For the case of a semi-in"nite

target, the drag forceF"F
�
applied by the target is given by (2.19) and can be expressed as [14,15]

F
�
"
R�

�
[A

�
;Q R

�
#B

�
;�#C

�
]#
R�

�
R	 �H f�(t), (2.20a)

A
�
"�

�
�
�
[1!(1!RM �

H
)���], (2.20b)

B
�
"�

�
�
�
RM �

H
(1!RM �

H
)�, (2.20c)

C
�
">

��RM �H ln 4!(1!RM �
H
)ln(1!RM �

H
)!

4
9
ln�

4
4!3RM �

H
��. (2.20d)

3. Derivation of the equations for projectile erosion during normal penetration

At moderate to high impact velocities the penetrating projectile #ows plastically in the whole tip
region whereas its rear part remains nearly undeformed. This process is accompanied by mass loss
of the projectile material near its tip. In the present model of penetration of an eroding projectile,
the target/projectile interface is approximated by an ovoid of Rankine of radius R

�
(see Fig. 1). An

irrotational velocity "eld in the projectile's deforming part is assumed which exactly satis"es the
impenetrability condition for the target/projectile interface when R

�
remains constant. However,

this velocity "eld does not satisfy the impenetrability condition when R
�

varies with time. In spite
of this fact, it is expected that except for the very initial stages of penetration, the value of R

�
does

not change sharply (this is con"rmed by the near cylindrical shapes of craters observed in
experiments) so that the velocity "eld is used even when R

�
changes. Furthermore, it is noted that

at very high velocities, the region where the target and projectile materials are in contact (in the tip
region of the projectile) represents only a small portion of the ovoid so its shape there is relatively
unchanged by variations of R

�
. Consequently, the rate of change of R

�
is neglected in the present

analysis of erosion even though R
�

is allowed to vary with time.
Next, the balance of linear momentum in the deforming region of the projectile is solved exactly

(for constant R
�
) to "nd expressions for the pressure and stress "elds. The boundary conditions on

the target/projectile interface and on the free lateral surface of the projectile are modeled approxim-
ately and the decelerations of the projectile's tip and of its rear part, as well as the radius of ovoid of
Rankine are expressed analytically. A method for the estimation of the crater radius is also
proposed.
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3.1. Velocity xeld in the projectile and the equation of motion of its rigid tail

If the radius R
�

of the ovoid is constant then the potential ����
�

of the velocity "eld in the target
[given by (2.7)] satis"es the continuity equation and the condition of impenetrability at the
interface. It is clear that for any constant =, the velocity "eld with a potential relative to the
projectile tip given in the form

����
�

"=R
�

�M ��� (3.1)

will also exactly satisfy the continuity equation and the condition of impenetrability at the interface
(for R

�
"constant). Following the above-mentioned discussion, this potential is used to approx-

imate the velocity "eld in the plastic zone of the projectile (region 2 in Fig. 1) near the tar-
get/projectile interface even when R

�
varies with time. The value of = characterizes the rate of

erosion of the projectile and will be found as a function of time.
Relative to a point at rest in the target, the above potential can be expressed as

�
�
"!;�#����

�
"!�

=R�
�

4(��#r�)���
!(=!;)��. (3.2)

Eq. (3.2) yields the following expressions for the radial v
��

and axial v
��

components of the velocity
"eld in the mushroom-like part of the projectile

v
��

"

=R�
�

r
4(��#r�)���

, (3.3a)

v
��

"�
=R�

�
�

4(��#r�)����#=!;. (3.3b)

This velocity "eld is not a good approximation of the real "eld in the outside region of the
mushroom-like part of the projectile, since it corresponds to a source situated somewhere in the
rigid portion of the projectile's tail. However, the velocity "eld (3.3) seems to be reasonably valid
near the target/projectile interface.
In the present analysis, the projectile is separated into two regions. The mushroom-like tip

region 2 has length l(t) (i.e. the distance between points S andM in Fig. 1), and the tail region 3 has
length ¸(t) (i.e. the distance between point M and the free rear surface of the projectile in Fig. 1).
It then follows that the current length (l#¸) of the projectile is determined by the equation

d
dt
(l#¸)"!(<!;). (3.4)

Moreover, the tail region 3 of the projectile is assumed to be a rigid body moving with uniform
velocity<"<(t). Consequently, since the yield stress>

�
acts on the tail at the surfaceM it follows

from rigid body dynamics that

<Q "!

>
�

�
�
¸

. (3.5)
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3.2. Stress xeld in the plastic zone of the projectile

Using the velocity "eld (3.3) in the plastic region 2 of the projectile (see Fig. 1), it can be shown
that the rate of deformation tensor D

�
in the projectile becomes

D
�
"KD

�
, (3.6a)

K"

=
;

, (3.6b)

where the expression for D
�
in the target is given by (2.11). Thus, the deviatoric stress ��

�
in the

plastic region of the projectile, corresponding to the velocity "eld (3.3), can be written in the form

��
�
">

�
�� �, (3.7)

where the non-dimensional tensor �� � is de"ned by (2.12b).
Furthermore, using (2.13), the balance of linear momentum can be solved in the plastic region 2

(Fig. 1) of the projectile to obtain an expression for the pressure p
�
in the projectile of the form

p
�
"f

�
(t)!�

�
=��

R�
�

�
4(��#r�)���

#

R

�

32(��#r�)��#�
�
;Q �!>

�
ln�

��#r�
R�

�
�, (3.8)

where =Q has been neglected in spite of the fact that ;Q has been retained. The function f
�
(t) is

determined using a matching condition for the normal stress at the boundary between regions
2 and 3 in the projectile (Fig. 1). Now, with the help of (3.7) and (3.8), Eq. (2.2a) can be evaluated on
the surface of the projectile to express the normal stress �

��
there as

�
���

"!p
�
#>

��
(!8#9RM �)
3(4!3RM �) �, (3.9a)

p
�
"f

�
(t)#�

�
=��

(1!3RM �)(1!RM �)
2 �#�

�
;Q R

��
2RM �!1

2(1!RM �)����#>�
ln [4(1!RM �)].

(3.9b)

These Eqs. (3.9) are used to calculate the axial force applied by the projectile material on the target.

3.3. Matching conditions at the target/projectile interface

It is of interest to note that for the special case when >
�

">
�
, the present model will cause the

normal stress to be continuous pointwise on the interface between regions 1p and 2 (see Fig. 1). For
the more general case when >

�
O>

�
, it is possible to approximate this exact boundary condition

by a matching condition equating the normal stress �
��

in the target with the normal stress �
��

in
region 2 of the projectile at point S (RM "0) on the axis. Thus, from Eqs. (2.17a) and (3.9a), (3.9b) it
can be shown that

f
�
(t)"f

�
(t)#�

2
3

#ln 4�(>�
!>

�
)#

�
�
2
;�!

�
�
2
=�#

�
�
#�

�
2

;Q R
�
. (3.10)

Since f
�
(t) is known from (2.15), Eq. (3.10) determines the function f

�
(t).
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Furthermore, the matching conditions at the target/projectile interface are each satis"ed in an
integral sense. In particular, the axial force applied to the projectile by the target through this
interface is given by (2.20). The stress distribution (3.9) at the projectile's surface is used to obtain an
expression for the force (}F

�
) applied by the projectile on the target material

F
�
"�R�

�
[A

�
;Q R

�
#B

�
=�#C

�
]#�R�

�
RM �

H
f
�
(t), (3.11a)

A
�
"�

�
�
�
[1!(1!RM �

H
)���(1#2RM �

H
)], (3.11b)

B
�
"�

�
�
�
RM �

H
(1!RM �

H
)�, (3.11c)

C
�
">

��RM �H ln 4!(1!RM �
H
) ln (1!RM �

H
)!

4
9
ln�

4
4!3RM �

H
��. (3.11d)

Moreover, since the force (}F
�
) applied by the projectile on the target should be equal in magnitude

and opposite in sign to the force (F
�
) applied by the target on the projectile, it is possible to use

(3.10) and equate expressions (2.20) and (3.11) to deduce that

�
�
=�"�

�
;�#(>

�
!>

�
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�
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H
)#2;Q R

��
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�
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H
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H
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H
)�, (3.12a)
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�
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, (3.12b)

G
�
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H
)ln(1!RM �

H
)!




ln �1!�



RM �

H
�#�

�
RM �

H
]

RM 

H
(2!RM �

H
)

. (3.12c)

3.4. Matching conditions at the rigid/plastic boundary in the projectile

In order to determine the location �"�
�

of the rigid/plastic boundary in the projectile (point
M in Fig. 1), use is made of the fact that at this point v

�
"}<. Thus, assuming that �

�
(0,

Eq. (3.3b) yields

�
=�

�
R�

�
4(��

�
#r�)���

#=!;��
���

"!<, (3.13)

so that

�M �
�

"

=
4(<#=!;)

, (3.14a)

�M
�

"

�
�

R
�

(0, (3.14b)

l"

R
�
2

#�
�
, (3.14c)
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where use has been made of the fact that the projectile's tip is located by �"}R
�
/2 [see (2.6a)].

The conditions that the rear portion of the projectile is in a state of uniaxial stress and that at the
elastic}plastic boundary the material yields, cause the axial stress �

��
to be set equal to (}>

�
) at

point M (�M "�M
�
, r� "0). This is essentially equivalent to assuming [5] that the projectile is

decelerated by its material strength.
Moreover, the continuity of the axial stress �

��
at point M can be expressed using (3.3), (3.6), and

(3.8) by the equations

;Q R
�

Q
�

"!Q
�
, (3.15a)

Q
�

"�
��

1
2

#�M
�

#

�
�

2�
�
�, (3.15b)

Q
�
"

�
�
2
;�#f

�
#�

2
3

#ln 4�>�
!

�
�
2
(<!;)�![1#ln(4�M �

�
)]>

�
. (3.15c)

Then, expressions (3.12a) and (3.15a) yield an equation which is used to determine the rate of
erosion=:

�
�
=�"�

�
;�#(>

�
!>

�
)G

�
(RM

H
)!

2G
�
(RM

H
)Q

�
RM 


H
(2!RM �

H
)Q

�

. (3.16)

It is emphasized that the matching conditions (3.15) at the rigid/plastic boundary in the projectile
determines an expression for ;Q in terms of= [through the value of �M

�
in (3.14a)] for each instant

of time. Therefore, after the rate of erosion= has been determined using (3.16) [which is essentially
the condition of continuity of force at the projectile/target interface], the value of ;Q is obtained
by (3.15a).
Note also that since =� must remain non-negative, Mode PE will be physically possible

only when the right-hand side of (3.16) remains non-negative. Consequently, when the right-
hand side of (3.16) becomes zero Mode PE ceases to exist and the calculation is terminated
with the current penetration depth being taken as the "nal penetration depth even though
the current projectile velocity is not necessarily zero. Actually, it is necessary to model another
mode of deformation of the projectile in order to proceed with the calculation from the time
that Mode PE ceases to exist until the time that the projectile ceases to penetrate the target.
However, this additional mode of deformation is not modeled here so the present analysis is valid
only for moderate to high impact velocities where the duration of Mode PE dominates the
penetration process.

3.5. Separation point

In order to determine the point at which the target material separates from the projectile's
surface, it is convenient to "rst determine the radius RM

�
corresponding to the point at which

the normal stress �
���

in the target vanishes. From (2.17b) and (2.17f) it follows that RM
�
is the root
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of the equation
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) �"0, (3.17a)
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R
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R
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. (3.17b)

Moreover, using (3.9) and (3.10) it is possible to calculate the radius RM
�
at which the normal stress

�
���

in the projectile (see region 2 of Fig. 1 which is the plastic mushroom-like part of the projectile)
vanishes. Thus, RM

�
is the root of the equation
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(t)"0,

(3.18)

where f
�
(t) is known from (2.15).

Also, the normalized radius RM


of the target/projectile interface (in the form of an ovoid of

Rankine) at the front surface of the target is determined using (2.6) by

RM


"�

1!�M �



2
#

�M


(�M �



#2)���
2 �

���
, (3.19a)

�M


"!

x
R

�

!

1
2
. (3.19b)

Expressions (2.17) and (3.9) for the stresses at the target/projectile interface are valid only over the
section from the projectile's tip (point S in Fig. 1) to the separation point (point P in Fig. 1). So the
separation point is determined by the normalized radius RM

H
de"ned by

RM
H

"Min[RM
�
,RM

�
,RM



], (3.20)

where RM
�
,RM

�
and RM



are calculated from (3.17), (3.18) and (3.19), respectively.

3.6. Scale parameter of the ovoid of Rankine

Consider a control volume (i.e. the mushroom-like region 2 of the projectile) as a body of
revolution with the generatrix SPP

�
M

�
M (Fig. 2). Here point S is the projectile tip and point P is

the separation point. The median cross-section PP
�
of the sheet of material #owing out of the

control volume is assumed to be su$ciently thin for the velocity pro"le there to be uniform. Also
the stress is assumed to be uniform over the surface PP

�
. The surface M

�
P

�
is a free surface; and

the velocity and stress pro"les over the cross-section MM
�
are assumed to be uniform.
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Fig. 2. Control volume for the plastic zone of the projectile characterizing the PE Mode.

Next, consider conservation of mass and the balance of linear momentum for this control
volume. The #ow velocity v��� in the frame of reference associated with the control volume, the
normal stress vector �

�
at the cross-section MM

�
, as well as its area A are given by

v����
���

"!(<!;)e
�
, (3.21a)

�
�
�
���

"!>
�
e
�
, (3.21b)

A�
���

"

�d�
�

4
, (3.21c)

where d
�
is the projectile's diameter. Also, the values of the velocity and normal stress vector at the

cross-section PP
�
of an area A�

���
are given by

v����
���

"v����
�M ��M H

e� , (3.22a)

�
�
�
���

"��� ��M ��M H
e� , (3.22b)

where e
�
is the unit tangent vector of SP at point P, and with the help of (3.3) v��	 is the #ow velocity

in region 2 at the separation point P relative to the projectile tip S

v����
�M ��M H

"[�v���
�

�
�M ��M H

��#�v���
�

�
�M ��M H

��]���, (3.23a)
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";K�1#
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H

4(�M �
H

#RM �
H
)����. (3.23c)
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The value of ��� at the separation point (where �
��

"0) can be evaluated using (2.2a), (2.6), (2.12)
and (3.7) to obtain

���">
��

(4!5RM �
H
)

(4!3RM �
H
)�. (3.24)

Thus, the conservation of mass and the axial component of the balance of linear momentum for the
given control volume can be written in the forms
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where F
�

is the axial force applied to the projectile by the target. Next, the impenetrability
condition associated with the target/projectile interface

(e
�
' e� )��M ��M H

"�
v���
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v�����
�M ��M H

(3.26)

and (3.21) are used, and (3.25a) is substituted into Eq. (3.25b) to obtain
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(3.27)

Moreover, equating expressions (2.20a) and (3.27), and using result (3.15a), it is possible to obtain
an expression for the radius R

�
of the ovoid of Rankine that approximates the target/projectile

interface

R
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H
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�
(t) �

���
. (3.28)

3.7. Crater radius

The ovoid of Rankine of radius R
�

approximates the target/projectile interface in the region
from the projectile tip up to the separation point where the normal component of the stress tensor
vanishes. However, this shape cannot be used for the prediction of the crater radius, because it does
not satisfy the condition that the crater surface is stress free (see Fig. 3a).
Here, the shape of the crater is approximated by another ovoid of Rankine of radius R


�
which is

moving with the same velocity ; (Fig. 3b). Although it is not possible to satisfy the boundary
conditions for surface tractions pointwise on the crater surface, it is possible to satisfy these
conditions approximately in integral sense. This is done by requiring the axial drag force
F
�
applied by the target on the projectile's tip to equal the axial force F


�
applied by the target over

the whole surface of the new ovoid which approximates the crater (with radius R

�
). In particular,

F

�
can be calculated by using RM

H
"1 in (2.20) and neglecting the term associated with;Q to obtain

F
��

"�R�
��
[ f

�
(t)#	



>

�
ln 4]. (3.29)
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Fig. 3. Determination of the crater diameter.

Now, the expression for F
�
is calculated by Eq. (2.20) where RM

H
and R

�
are determined using

expressions (3.20) and (3.28). Thus, solving (3.29) for the crater radius R

�
and equating F


�
with

F
�
yields

R
��

"�
F
�


� f
�
(t)#	



>

�
ln 4��

���
. (3.30)

3.8. Very high impact velocities

For the case of very high impact velocities, the pressure and the inertial e!ects dominate the
e!ects of deviatoric stresses. Also, the penetration process can be modeled assuming nearly
steady-state conditions with the deceleration of the projectile tip ;Q being neglected. Speci"cally,
�>

�
,>

�
, ;Q � are neglected in Eq. (3.12a) to obtain

=
;

"�, (3.31a)

�"�
�
�

�
�
�

���
. (3.31b)

Furthermore, for the case of penetration into a semi-in"nite target, f
�
(t)"0, and Q

�
,>

�
and

>
�
are neglected in (3.15c) to deduce that

�
�
;�"�

�
(<!;)�, (3.32a)

;"

<
1#�

. (3.32b)

Since Eq. (3.32a) is the same as that used in [1], this analysis shows that the present model
asymptotically approaches the hydrodynamic treatment. Moreover, the more general model,
which includes strength e!ects, will be shown to produce reasonably good agreement with
experimental data for moderate impact velocities (between 1500 and 3000m/s). Therefore, the
general model produces the usual S-shaped curve for penetration depth vs impact velocity, with the
importance of strength e!ects for moderate impact velocities being signi"cant, as was recently
discussed in [18].

588 I.V. Roisman et al. / International Journal of Impact Engineering 25 (2001) 573}597



Next, using the assumptions of this section, Eq. (3.17a) can be solved for the separation point at
which the normal stress vanishes to deduce from (2.6a) that

RM
H

"RM
�
"

1

�3
, (3.33a)

�M
H

"�
�

R
�
��

�M ��M H

"!

1

2�6
. (3.33b)

Now, since ;Q and >
�
are neglected and f

�
(t)"0, it follows from (2.20) that

B
�
"

2
27

�
�
, (3.34a)

C
�
"0, (3.34b)

F
�
"

2
27

�R�
�

�
�
;�. (3.34c)

Moreover, Eqs. (3.6b) and (3.33) can be used to rewrite (3.23c) in the form

v���
�

�
�M ��M H

"�


=. (3.35)

Furthermore, it is noted that for the case when >
�
"0, that the tangential stress ��� also vanishes

at the separation point

���"0, (3.36)

so that substitution of (3.31), (3.32), (3.34)}(3.36) into (3.28) with Q
�
"f

�
">

�
"0, yields the

following simple expression for the radius R
�

of the ovoid of Rankine:

R
�

"�6d
�
. (3.37)

At this point it is observed that if >
�
is set equal to zero in (3.30) with f

�
"0, then the resulting

expression predicts the unphysical result that the crater radius R

�
approaches in"nity at very high

impact velocities. This result is consistent with the conclusion presented in [19] that the crater
radius cannot be calculated within the framework of the theory based on the ideal #uid model.
Indeed, such a model predicts that the crater can expand in"nitely without plastic dissipation.
Consequently, the plastic part of the total force F


�
applied to the projectile cannot be neglected, as

compared with its inertial part, even at very high impact velocities [see Eq. (3.29)]. Thus, using
(2.15) for f

�
, (3.34c) for F

�
, (3.37) for R

�
, Eq. (3.30) yields an alternative expression for the crater

radius R

�
of the form

R
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"2�
�
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>
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���
d
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;. (3.38)

Next, using (3.32b), this expression for the crater radius can be rewritten in the form

R
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"

2d
�

1#��
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�
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>
�
�5 ln 4#9 ln (�M �

�
)��

���
, (3.39)

which is used for very high impact velocities only.
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3.9. Quasi-steady-state stage of penetration

For the case of long rod penetration, as noted in [20], the projectile motion is approximately
steady state for a signi"cant portion of the penetration process. Therefore, the terms corresponding
to the projectile deceleration (which include the factor ;Q ) can be neglected during this portion of
the process. Consequently, the di!erential equation (3.15) and Eq. (3.16) can be reduced to the
following system of algebraic equations

�
�
2
;�#f

�
#�

2
3

#ln 4�>�
!

�
�
2
(<!;)�![1#ln(4�M �

�
)]>

�
"0, (3.40a)

�
�
=�"�

�
;�#(>

�
!>

�
)G

�
(RM

H
), (3.40b)

where G
�
(RM

H
) is de"ned in (3.12c), and �M

�
, which depends on ; and =, is de"ned in (3.14).

Eqs. (3.40) have forms very similar to the modi"ed Bernoulli equation proposed in [4}6]. In
particular, note that for the small values of ; the right-hand side of Eq. (3.40b) can be negative so
the system will have no real solution. Physically, this determines the velocity at which Mode PE
(projectile erosion) is kinetically inadmissible. Therefore, the calculation is terminated either when
; vanishes and the penetration process stops or when the right-hand side of Eq. (3.40b) vanishes.
Again, it is noted that if signi"cant projectile velocity remains at this point then another mode of
deformation is required to continue the calculation. This additional mode of deformation is not
modeled and related cases with low impact velocities are not considered in the examples discussed
later in this work.

4. Initial conditions

The initial stage of penetration is accompanied by the wave propagation in the target and
projectile material. In order to account for this wave propagation process, the initial velocity of the
target/projectile interface;

�
is determined using the Rankine}Hugoniot jump conditions. To this

end, denote u

�

and u

�

as the absolute shock velocities in the projectile and target, respectively.
The material velocities in the target and in the projectile within the shocked region are equal to the
velocity;

�
of the target/projectile interface.Moreover, the relationship between the shock velocity

and the material velocity in each of the materials is approximated by linear dependence as
proposed in [7]

u
��

"c
��

#k
�
;

�
, (4.1a)

<
�
!u

��
"c

��
#k

�
(<

�
!;

�
), (4.1b)

where k
�
, c

��
, k

�
and c

��
are target and projectile material parameters and <

�
is the impact

velocity of the projectile. Values of these material parameters for some materials are given
in Table 1.
Neglecting the deviatoric stresses in the shocked region, the pressures p

�
and p

�
at

the target/projectile interface in the target and in the projectile, respectively, due to the
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Table 1
A list of material constants for calculation of the Rankine}Hugoniot jump conditions [7]

Material c
�
(m/s) k

Aluminum (6061-T6) 5350 1.34
Armor steel 4500 1.49
Tungsten alloy 3850 1.44

jump conditions become

p
�
"�

�
u
��
;

�
, (4.2a)

p
�
"�

�
(<

�
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��
)(<

�
!;

�
). (4.2b)

Thus, by equating p
�
and p

�
and using (4.1), it is possible to derive an expression for;

�
of the form
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, (4.3c)

c"c
��
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�
#k

�
<�

�
, (4.3d)

or

;
�
"

c
b

if a"0. (4.4)

5. Solution of the equations of motion of the projectile

Using the above analysis, a computer program has been developed to numerically integrate the
equations for the motion and deformation of a deformable projectile penetrating a target. Speci"-
cally, for the general case, the equations of motion (2.5), (3.4), (3.5), (3.15a) are integrated numer-
ically, subject to the initial conditions

x(0)"0, ¸(0)"¸
�
!l(0), <"<

�
, ;";

�
, (5.1)

where use is been made of (2.15) for f
�
; (2.16) for �M

�
; (3.12b) for G� ; (3.12c) for G

�
; (3.14a) for �M

�
;

(3.14c) for l; (3.15b) for Q
�
; (3.15c) for Q

�
; (3.16) for=; (3.20) for RM

H
; (3.17) for RM

�
; (3.18) for RM

�
;

(3.19) for RM


; and (4.3) and (4.4) for ;

�
. Also, the crater radius R


�
is determined by (3.30). The

calculation is terminated either when ; or ¸ vanishes, or when the right-hand side of (3.16)
becomes negative andMode PE ceases to be kinetically admissible. If; and/or< do not vanish at
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Table 2
A list of experiments, references, and relevant material and geometrical properties

Page in Projectile Target
Ref. [21]

d
�

L
�
/d

�
�
�

Y
�

�
�

Y
�

(mm) (kg/m�) (MPa) (kg/m�) (MPa)

EXP1 A78 5.4 10 7850 760 7850 990
EXP2 A76 2.5 10 7850 760 7850 990
EXP3 A74 5.4 10 7850 760 7850 430
EXP4 A75 5.4 10 7850 760 7850 590
EXP5 A104 5.8 10 15,500 820 7850 850
EXP6 A105 5.8 10 17,300 950 7850 850
EXP7 A106 5.8 10 17,000 1015 7850 850
EXP8 A206 6.35 7.5 7850 1263 7850 1263
EXP9 A200 6.35 7.5 7850 1263 7850 1448

the termination of the calculation then an additional mode of deformation is needed to complete
the penetration process. However, such a mode is not modeled here. Consequently, the present
model is valid for intermediate to high values of the impact velocity<

�
whereMode PE dominates

the penetration process. Also, it is noted that for low values of <
�
, the projectile can be modeled as

a rigid body [14,15].

5.1. Results of numerical simulations: comparison with experimental data and discussion

In order to examine the accuracy of the numerical solution of this model of penetration, the
results of a number of computations have been compared with experiments chosen from the
numerous data collected in [21]. A list of these experiments, together with the associated references
and the relevant material and geometric properties is recorded in Table 2. Moreover, here attention
is con"ned only to those cases where Mode PE dominates the penetration process. This excludes
the range of impact velocity below about <

�
"1500 m/s as well as cases when the yield stress and

the density of the projectile signi"cantly exceed the corresponding parameters of the target. For
these material parameters and range of impact velocities, Mode PE with erosion is not applicable
and the projectile deforms without erosion or remains relatively rigid. This mode of deformation
without erosion has not been modeled in the present work and remains a topic for future research.
Figs. 4}7 compare the numerical predictions of the penetration depth P with the experimental

values. Fig. 4 shows the e!ect of varying the initial diameter d
�
of the projectile, Fig. 5 shows the

e!ect of varying the yield stress of the target material, Fig. 6 shows the e!ect of varying the material
properties of the projectile, and Fig. 7 shows the e!ect of varying the yield stress of the target
material. The agreement between the theoretical predictions (solid lines) and experimental data
(symbols) is good.
At this point it should be emphasized that only the published values of the material properties

have been used in these calculations and no attempt has been made to adjust material parameters
to match the experimental data.
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Fig. 4. Penetration depth. Comparison of the computed values with the experimental results (EXP1 and EXP2 in
Table 2) for projectiles of di!erent diameters penetrating the same target. (a) EXP1, d

�
"5.4mm, (b) EXP2, d

�
"2.5mm.

Fig. 5. Penetration depth. Comparison of the computations with the experimental results (EXP3 and EXP4 in Table 2)
for the same projectile penetrating targets with di!erent yield stresses. (a) EXP3, >

�
"430MPa, (b) EXP4,

>
�
"590MPa.

Fig. 6. Penetration depth. Comparison of the computations with the experimental results (EXP5, EXP6, and EXP7 in
Table 2) for the projectiles made of di!erent materials penetrating the same target. (a) EXP5, �

�
"15,500kg/m�,

>
�
"820MPa; (b) EXP6, �

�
"17,300kg/m�, >

�
"950MPa; (c) EXP7, �

�
"17,000kg/m�, >

�
"1015MPa.
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Fig. 7. Penetration depth. Comparison of the computations with the experimental results (EXP8 and EXP9 in Table 2)
for the same projectile penetrating targets with di!erent yield stresses and densities. (a) EXP8, >

�
"1263MPa,

�
�
"7850 kg/m�; (b) EXP8, >

�
"1448MPa, �

�
"7850 kg/m�.

Fig. 8. Normalized data for the penetration depth. The theoretical results are shown by curves and the experimental data
are shown by symbols. EXP5: solid line and open circles; EXP6: dashed line and filled circles; EXP7: dashed}dotted line
and crosses.

The theoretical curves in Fig. 7 exhibit small kinks between <
�
"1500 and 2000m/s. As

mentioned earlier, the calculation is terminated when either; or ¸ vanishes, or Mode PE becomes
kinematically inadmissible. Therefore, these kinks at lower impact velocities are mainly attributed
to the non-monotonic manner in which these conditions can terminate the calculation. However, in
spite of this problem, the results of the present model are in good agreement with experimental
data.
Results for the penetration depth in EXP5, EXP6 and EXP7 are combined in Fig. 8 in the same

normalized form used in [7,21] to present data for comparison with the usual S-curve. From Fig. 8
it can be concluded that the theoretical curves have about the same spread as the experimental data
(which are located a bit above the theoretical predictions). These curves are similar to the middle
sections of the S-curves presented in [7,21]. As previously mentioned, the present model does not
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Fig. 9. Crater diameter. Comparison of the computations (solid lines) with the experimental results (EXP1 and EXP2 in
Table 2) (symbols), as well as with the asymptotic result (3.48) (dashed lines) for projectiles with di!erent initial diameters
penetrating the same target. (a) EXP1, d

�
"5.4mm, (b) EXP2, d

�
"2.5mm.

Fig. 10. Crater diameter. Comparison of the computations (solid lines) with the experimental results (symbols), as well as
with the asymptotic result (3.48) (dashed lines) for the same projectile penetrating targets with di!erent yield strengths
and d

�
"5.4mm. (a) EXP3, >

�
"430MPa, (b) EXP4, >

�
"590MPa.

apply for impact velocities below about 1500m/s. Moreover, no calculations have been made for
impact velocities above about 3500m/s where the S-curve saturates. However, the theoretical result
(3.32) indicates that saturation of the penetration depth follows from the present model for very
high impact velocities.
Figs. 9}12 compare the computations of the crater diameter D


�
"2R


�
(solid lines) with the

asymptotic result (3.39) (dashed lines) and the experimental results (symbols). The parameters of the
penetration process are the same as those in Figs. 4}7. The value of the crater diameter [calculated
via Eq. (3.30)] for Mode PE changes with time. Consequently, the residual crater diameter D

��
is

taken to be the maximum value of 2R
��
obtained during the penetration process and this value is

shown in the "gures.
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Fig. 11. Crater diameter. Comparison of the computations (solid lines) with the experimental results (symbols), as well as
with the asymptotic result (3.48) (dashed lines) for projectiles made from di!erent materials penetrating the same target
with d

�
"5.8mm. (a) EXP5, �

�
"15,500kg/m�,>

�
"820MPa; (b) EXP6, �

�
"17,300kg/m�,>

�
"950MPa; (c) EXP7,

�
�
"17,000kg/m�, >

�
"1015MPa.

Fig. 12. Crater diameter. Comparison of the computations (solid lines) with the experimental results (symbols), as well as
with the asymptotic result (3.48) (dashed lines) for the same projectile penetrating targets with di!erent yield stresses and
densities. (a) EXP8, >

�
"1263MPa, �

�
"7850 kg/m�; (b) EXP9, >

�
"1448MPa, �

�
"7850 kg/m�.

6. Conclusions

The model developed in the present paper describes penetration of an eroding projectile into an
elastic}plastic target. The solution does not use any adjustable parameters or functions and it
involves only the geometrical and material data known for the experiments taken from the
literature which have been used for comparisons.
The model is capable of predicting the penetration depth, the crater diameter and the residual

length and mass of the penetrating projectile. When the yield stress of the projectile >
�
does not

exceed the yield stress >
�
of the target, the agreement between the theoretical predictions and the

experimental data is good. In particular, the agreement between theory and experiment improves
as the impact velocity increases and the projectile erosion Mode PE dominates the penetration
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process. However, the present model cannot be applied to the cases when >
�
<>

�
or when the

density �
�
of the projectile is much greater than the density �

�
of the target (�

�
<�

�
). A model for

these cases is beyond the scope of the present work and is worthy of future research.
The present model has been shown to reduce to the well-known form of the hydrodynamic

theory of shaped-charge jets. However, as was known, the crater diameter cannot be determined for
very high impact velocities unless the yield stress in the target is included in the analysis. Here,
a simpli"ed asymptotic formula for the crater radius has been derived which includes the e!ect of
the target's yield stress. This formula predicts values of the crater diameter which compare well
with experimental data for very high impact velocities.
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