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Abstract

A model to predict the ballistic ricochet of rod penetrators is presented. The model is based on the premise that
the phenomenology of ricochet is one where the impacting rod feeds into a plastic hinge located at the rod/
target interface, and is thus diverted from a penetrating trajectory. The model is offered in both a full and simple
form. The full form of the model arises from the simultaneous solution of a series of six algebraic equations that
constitute the momentum-flux/force and moment balances upon the plastic hinge, subject to various material
and kinematic constraints. This full model is not solvable in closed form, but rather by way of algorithm. The
simple form of the model, by contrast, dispenses with the moment balance and makes several simplifying
kinematic assumptions that permit the ricochet criterion to be expressed as a closed-form inequality. Such a
simplified form is along the lines of, and thus directly comparable to, several prior ricochet models in the
literature. Compared against 24 ballistic tests, comprising two separate ricochet studies, the current model
(in both forms) shows an improved ability to predict the ballistic ricochet of impacting rod projectiles. The
simple form of the current ricochet model actually proved the best predictor of the ballistic data.
Published by Elsevier Ltd.
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1. Introduction

The phenomenon of ricochet is an important consideration in ballistics. While a large fraction
of laboratory-generated ballistic data is gathered under idealized impact-conditions of normal
incidence, the physical and mathematically probable reality is that virtually all ballistic impacts on
the battlefield occur at some nontrivial level of impact obliquity (as measured from the target
see front matter Published by Elsevier Ltd.
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normal). At low to moderate obliquity levels, the ballistic effect of the obliquity may only be
that of an increased line-of-sight target thickness of the target. However, depending upon
the material properties of the rod and target, the geometry of the rod, the impact velocity, and
yaw, there will exist a critical angle of obliquity at and beyond which the rod ricochets from the
target surface.
Ricochet has been a long studied phenomenon. An excellent review of work in the area is

provided as a chapter in Goldsmith’s review paper on projectile impact [1]. Much of the research
in ricochet centers is on compact projectiles or on rigid projectiles. A much smaller fraction of the
work is focused on medium- and long-rod ricochet, where a different phenomenology often
manifests itself.
Radiographic evidence and hydrocode simulation of long-rod ricochet was presented by Jonas

and Zukas [2] in 1978. With experimental radiography and corroborating hydrocode simulation,
they demonstrate how the rod can form a plastic hinge at the impact site (stationary with respect
to the target) and deflect the rod from a rigid target surface. As the intention of Jonas and Zukas
was to demonstrate a hydrocode modeling capability, no analytical modeling or analysis was
offered.
In 1979, Tate [3] developed an early model for the ricochet of rods, in which the cylindrical rod

(of square cross-section) responds as a rigid body away from the eroding tip. Tate’s model allows
the local erosive deformation of the rod in the immediate vicinity of the impact. The asymmetric
forces acting on this deforming rod tip are evaluated to ascertain their capacity to induce a
rotation sufficient to bring about ricochet during the limited time before the rod tip becomes fully
engaged in the target. While the model permits local deformation at the rod’s tip, affecting the line
of action of the interaction force, ricochet is judged to occur only if the remainder of the rod is
adequately rotated, in a rigid fashion about its center of gravity, so as to produce a net linear
velocity in the rod tip parallel to the target surface. Tate’s approach produces an analytical
expression for the target obliquity angle yCRIT; beyond which ricochet is predicted to occur. The
expression for it is given as
Tate model:

tan3 yCRIT4
2

3

rRV2

Y

L2 þ D2

LD

V

V � U
, (1)

where rR is the rod’s density, V is the striking velocity of the rod, Y is the yield strength of the rod,
L and D are the rod’s length and diameter, respectively, and U is the initial penetration velocity of
the rod into the target. The analysis is based upon the impact of flat-nosed projectiles. Note that
the need for the penetration velocity U as input to the model requires an auxiliary calculation
from a ballistic penetration model, such that U, in addition to the rod variables already listed,
becomes a function of the target resistance H and the target density.
One of the drawbacks of the Tate ricochet model is its failure to predict ricochet for the rigid-

rod (i.e., U ¼ V ) scenario, because of the method used to calculate the line of action of the
interaction force. Further, because of the model’s requirement to ricochet by way of rigid-rod
rotation, ricochet becomes increasingly improbable as the rod length is increased. The empirical
observation of a plastic hinge in the rod does not play into the modeling phenomenology of the
Tate ricochet model. While perhaps relevant for lower velocity impacts, Tate’s model tends to
require very high obliquities to predict ricochet, precisely because the model assumes a rigid-rod
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response in which the complete rod must acquire rotational motion, about its center of mass, in
order for the rod nose to acquire its needed deflection velocity.
Like Jonas and Zukas [2], Senf et al. [4] similarly showed in 1981 how the ricocheting rod can

form a plastic hinge at the impact site to deflect the rod from a rigid target surface (see Fig. 1).
Such observations provided additional evidence that, even in the absence of erosion, a rigid rod
assumption does not necessarily hold during the ricochet process. Like Jonas and Zukas, the
intention of Senf et al. was to demonstrate hydrocode modeling capability, and so no additional
analysis was offered. One important point to draw from their result, in distinction to Tate’s
Fig. 1. Spark cinematography of a ricocheting rod projectile [4].
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ricochet modeling, is that, when this plastic-hinge phenomenology is operational, an increase in
the length of the rod is not necessarily an impediment to ricochet.
Reid et al. [5] began to address, with analysis, the notion of the plastic hinge, traveling down the

rod’s length, but stationary with respect to the target surface. In their analysis, they simplified the
problem to consider only the transverse bending forces, and were able to analogize the problem to
one of a transverse impact on the free end of a cantilever beam. As such, their solution falls in the
realm of mechanics of materials, and does not consider issues of momentum flux through the
hinge region, which will be shown to exert influence at higher striking velocities. From their
analysis, they are able to predict that the hinge is able to traverse down the rod only 41% of its
length, before being arrested as the rod acquires the same rotational velocity as the material in the
hinge. While such an analysis helped to explain their own experimental data, it is at odds with the
higher-velocity experiments of Jonas and Zukas [2] and Senf et al. [4], wherein the hinge was
observed to traverse the full length of the rod.
Johnson et al. [6] studied ricochet interactions of plasticine (modeling clay) rods and targets.

Based upon predictions from Tate’s ricochet model [3], Johnson et al. limited their testing to
impact obliquities above 751. Photographic records of their testing reveal plastic-hinge behavior
similar to that reported by Jonas and Zukas [2], Senf et al. [4]. Despite this missed opportunity to
critically test aspects of the Tate model, the authors nonetheless conclude that ‘‘test results
generally confirm [the Tate ricochet] equation’’ (even though ricochet by way of plastic hinge is
not part of the Tate ricochet methodology). Beyond correlation with the Tate model, empirical
relations were presented between target imprint dimensions and striking velocity, as well as some
time history data from specific tests.
By 1983, several of the authors previously examining the ricochet problem combined efforts to

produce new results. The work of Johnson et al. [7] continued with the impact of plasticine rods,
this time upon rigid targets, with new analysis brought to bear on the problem. The impact
velocities were very low and impact obliquities were restricted to angles below 601. Their work
seems to focus more on the related but distinct problem of rod buckling as the primary mode of
deformation, rather than bending associated with ricochet deflection.
Rosenberg et al. [8] revisited the ricochet problem in 1989. They acknowledge adapting many of

Tate’s [3] original premises, concerning the origins of the asymmetric force that acts upon the
eroding tip of the impinging rod, as well as the assumed square cross-section of the rod. However,
the key point of departure for Rosenberg et al. is in assuming that the interaction force acts only
upon the mass actively engaging the target, and not upon the wholly remaining rigid rod as Tate
assumed. Thus, in the Rosenberg model, the interaction force acts to linearly deflect rod–tip
material in the transverse direction, rather than acting to apply a rotational moment upon the
rigid rod, as in the Tate ricochet model. This alteration, the authors indicate, is to account for
‘‘bending rods,’’ an allusion to the plastic hinge phenomenon observed during rod ricochet by
many authors. The resulting ricochet criterion is given as
Rosenberg model:

tan2 yCRIT4
rRV2

H

V þ U

V � U
, (2)

where H is the target resistance. Like Tate’s model, the Rosenberg model’s need for the
penetration velocity U as input demands a further calculation that requires, in addition to those
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variables listed, knowledge of the rod strength Y and the target density. The model was shown to
have good prediction ability for L=D ¼ 10 tungsten (WA) rods launched against rolled
homogeneous armor targets at striking velocities between 600 and 1400m/s and target obliquities
between 551 and 751.
The interaction methodology of Rosenberg et al. however, calculates the force interaction based

upon a virgin, flat-nosed rod striking an erodible (but as yet undeformed) target. Thus, it would
seem that the methodology should only offer a prediction as to what happens to the initial flux of
rod material against the target. Once the initial tip of rod is deflected, for example, the geometric
‘‘initial conditions’’ of the remaining rod and gouged target surface are no longer in harmony with
the model’s assumptions. Such a situation indicates that the model would be unable to predict
observed cases wherein the rod’s tip is sloughed off via ricochet followed by the remaining rod
shank establishing penetration. And like Tate’s model from which it is derived, the methodology
breaks down under conditions in which the rod remains rigid (i.e., when U ¼ V ), because of the
manner in which the interaction force’s line of action is calculated.
More recent studies of the ricochet phenomenon focus on spherical projectiles [9], rigid

projectiles [10], computational methods [11], or else touch on ricochet only peripherally as part of
a larger examination [12,13]. None of these studies offer additional analytical modeling insight
into the phenomenology of medium- and long-rod ricochet.
2. Model construct

In this report, a new ricochet model is developed and presented. The fundamental premise of
the proposed model is the assumption (borne out by repeated observation [2,4,6]) that ricochet
occurs via a plastic hinge in the rod, located at, and stationary with respect to, the target interface,
into which the moving rod feeds itself. Unlike a mechanics-of-materials-based approach, the
proposed model accounts for the momentum fluxes that enter and leave the hinge region. And
unlike approaches that seek to ascertain ricochet by examining the rod/target force interaction in
the first few microseconds of impact, the current model bases its ricochet judgment on the answer
to a different question: can the interaction stresses and fluxes in the rod and target produce the
forces and moments required to continuously sustain a plastic hinge at the rod–target interface?
While such an approach can be criticized for ignoring key influences, like the rod’s nose shape,

other ricochet models likewise limit their utility by basing their predictions on one particular nose
shape; namely, a flat-nosed rod. Another deficiency of the current approach is the assumption that
the rod is massive and long enough to ensure no change over time in the rod’s engagement-yaw
angle, despite the interaction moment applied to the rod at the hinge. In truth, any rotation of the
rod prior to the moment that penetration is firmly established only aids the propensity to ricochet.
While such rotations are the most significant for shorter rods, where the moment of rotational
inertia is small, the current approach will nonetheless be unable to predict changes in the rod-pitch
characteristics that might occur over the course of a single ballistic event. In spite of this, or more
precisely because of it, the model should provide a conservative estimate of a rod’s propensity to
ricochet (i.e., ricochet will be at least as likely as the model predicts).
While analytically based, the full model cannot, unfortunately, be distilled down to a single

inequality, as can the models of Tate [3] or Rosenberg et al. [8] (however, a simplified version of
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the full model will be discussed later in this report). Nonetheless, the full model is represented by a
handful of algebraic equations that must be simultaneously solved, subject to various constraints.
The algorithm was coded, so that the predictive envelope of the model could be explored.
Examining in Fig. 2 the macroscopic view of a ricochet event resulting from a steady-state

plastic hinge, one may note some of the defining constructs of the proposed model. All forces and
moments shown in the figure represent forces and moments acting upon a control volume (shown
shaded) of rod material that extends from the leading edge of the plastic hinge to the point where
the ricocheted material becomes free-flying. Along the length of the hinge, the target interacts with
the rod material within the plastic hinge over an elliptical area of the target surface described by
the projection of the rod’s cross-section onto the target’s (original) surface. The center of this
interaction ellipse is designated as point O, and represents the intersection of the rod’s central axis
with the target’s original surface.
Referring to this figure, the circular cross-section rod, of density rR; impacting with velocity V,

at an angle of obliquity y; applies some net level of compressive force f along the axis of rod
(which intersects point O), upon the leading edge of the hinge. There is also a clockwise bending
momentM, about O, applied at the hinge’s leading edge, due to the stress-field gradient associated
with rod bending at that location. While the method does not solve the problem for the general
multi-axial stress field, there are certain low-flux cases where accounting for the shearing traction
T across the leading edge of the hinge becomes necessary, as well. The trailing edge of the control
volume (just beyond the plastic hinge), through which the ricocheted material exits, is assumed to
be stress free. Ricocheted material leaves the hinge with the same velocity it entered, namely V,
representing a net rate of mass flux through the hinge of dm/dtmass per unit time. The ricocheted
material exits upon a trajectory at angle a with respect to the target surface. To the hinge, the
target applies a compressive load of magnitude F through point O. Allowing that the target may
be plastically gouged under the elliptical footprint, the target force may be acting on a line at an
angle Z with respect to the target surface. A positive momentMT, about O, will arise if the target’s
stress field is skewed to the leading edge of the elliptical footprint of interaction. The target
M

F

f V

θ

V

η

MT

T
O

Fig. 2. A macro-view of ricochet phenomenology, depicting forces and moments upon and fluxes through the plastic

hinge contained within the shaded control volume of the rod.
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moment may be positive, zero or negative, depending on the skew of the target stress field within
the elliptical interaction footprint.

2.1. Momentum and moment of momentum balances

Even without specifying the detailed nature of the stress fields at this point (i.e., limiting the
view of ricochet to that presented in Fig. 2, the momentum and moment-of-momentum balances
may be composed, by employing standard momentum analyses upon the shaded control volume
of Fig. 2:
Force/momentum-flux normal to f:

F sinðyþ ZÞ ¼ T þ V _m cosðy� aÞ, (3)

Force/momentum-flux normal to F:

f sinðyþ ZÞ ¼ T cosðyþ ZÞ þ V _m cosðaþ ZÞ � sinðyþ ZÞ½ �, (4)

Moment of momentum about O:

M þ MT ¼ Txs þ xfV _m. (5)

In Eq. (5), the term xs represents the perpendicular distance from point O to the face of the
leading edge of the control volume (where shear traction T acts), and xf is the perpendicular
distance from point O to the central trajectory axis of the ricocheting material (the line of action
of the momentum efflux). In all these equations the momentum flux entering and exiting the
control volume may be calculated as

V _m ¼ rRV2A0, (6)

where A0 is the cross-sectional area of the rod, equal to pD2=4: Eqs. (3)�(5) are the primary
equations to be solved, with unknowns f, F, T, M, MT, a; and Z: Clearly, linkages between and
constraints upon these variables will need to be constructed in order to obtain a solution. While
yet unknown, the distances xs and xf are calculable from geometric considerations.

2.2. Plastic-hinge geometry

A characterization of the plastic-hinge geometry needs to be put forth, in order to specify the
distances xs and xf, which are moment arms for the shear traction and momentum efflux,
respectively. Furthermore, a specification of the hinge geometry will also be useful later in
calculating the strains present within the plastic hinge. The knowledge of strains in the rod may be
used as an estimate as to whether a ricocheting rod retains its integrity as a rod, or alternately
breaks into a spray of ricocheting fragments.
Fully consistent with strength-of-materials beam theory, the plastic hinge starting and ending

boundaries may be specified as planes perpendicular to the symmetry axes of the striking and
ricocheting rod, respectively. Beyond this, the sole geometric assumption that constrains the
plastic hinge location is that the hinge be confined to distance from the target surface exactly equal
to one rod diameter D (Fig. 3). The reasoning is as follows: as the ricocheting rod material within
the hinge changes its trajectory through an angle of p=2� yþ a; it will at some point in that
process, flow parallel with the surface of the target plate (and the associated rod cross-section will
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Fig. 3. View of plastic-hinge geometry, depicting kinematic variables s1, s2, xs, and xf, in terms of D, a; and y:
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thus be perpendicular to the target surface). If the rod does not flatten significantly during the
ricochet process, and if any plastic deformation of the target remains measurably small, the rod
cross-section at that point in the hinge will necessarily span the distance from the target surface to
a distance D from the surface. It seems kinematically unlikely, then, that there would
simultaneously exist an elastic rod cross-section (outside of the hinge) that is fully entrained
within a distance less than D from the surface. It seems kinematically unlikely, then, that there
would simultaneously exist an elastic rod cross-section (outside of the hinge) that is fully entrained
within a distance less than D from the surface. This assumption, therefore, merely reflects the
reasoning that any cross-section of the rod fully entrained within a rod-diameter’s distance from
the target is very likely in a plastic state and is thus part of the hinge.
With this geometric assumption in place, the moment arms for the shear traction and

momentum efflux, used in Eq. (5), may be determined, respectively, from Fig. 3 as

xs ¼ D
1

cos y
�
tan y
2

� �
, (7)

xf ¼
D

2
1�
sin a
cos y

� �
. (8)

It is seen that, while xs is fully determined from the striking conditions of the impact, the value of
xf is dependent upon the unknown ricochet angle, a:
Likewise, from Fig. 3, the distances from the leading and trailing edges of the hinge to the

average center of curvature for the hinge may also be determined, respectively, as

s1 ¼
D

cos y
tan y� tanða=2Þ
� �
1þ tan y tan að Þ

, (9)

s2 ¼ s1
sin y
cos a

. (10)

These values will later be used as part of a strain calculation.
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2.3. Stress and strain fields

While the macroscopic view of Fig. 2 shows the forces and moments acting upon the control
volume, it must be appreciated that these net forces and moments arise out of the detailed stress
fields that are applied to the surface of the control volume. While this model does not propose to
solve exactly for what those stress fields must be, certain reasonable assumptions may be asserted
as to what general form they take. The specification of these stress field forms will permit their
integration over surface areas of the control volume to yield the macroscopic forces (f, F, T) and
moments (M, MT) that enter into the momentum balances of Eqs. (3)�(5).
Knowledge of strain fields, on the other hand, is not required in determining whether a ricochet

solution is viable. However, if a viable ricochet solution is found, the geometry of the resulting
hinge may be used to estimate the local strain field in the rod. Knowledge of this strain field and
the material’s strain-to-failure properties, in turn, can provide useful information to estimate, for
example, whether the ricocheting rod will retain the integrity of an intact rod, or whether it is
likely to fracture into a spray of deflecting fragments. Such knowledge would be useful in
ascertaining the lethality of a threat projectile in a post-ricochet condition.
2.3.1. Stress field in rod
In traditional strength of materials theory, a plastic hinge that results from pure bending in a

circular cross-section beam acquires a stress field in which exactly half of the beam’s cross-section
is in compression and half in tension. In order for the stress state to represent a plastic hinge, all
fibers in the cross-section must be at the yielding stress Y. And thus, the full cross-section acquires
a normal stress magnitude s equal to Y, half of it in compression and half in tension. Such a stress
state produces a cross-section that is in pure bending.
In the case of an impacting rod, however, one expects an axial compressive component resulting

from inertia of the decelerating rod as it strikes the target. The proposed stress state distribution
that will allow both the presence of a plastic hinge, as well as a net axial force component f is
described in Fig. 4. In this cross-section, all material elements possess a stress magnitude s at the
yield point, necessary to facilitate a plastic hinge. However, unlike the traditional hinge, the
θ

σ

α

τ

+
− xR

O

Fig. 4. Detailed stress field (s; t) in rod’s cross-section at the onset of the plastic hinge, located at the control–volume
boundary.
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fraction of the rod cross-section under compression will not equal exactly 0.5, but rather fall in the
range of 0.5–1.0, in order to produce a net axial compressive force f perpendicular to the cross-
section.
The variable that will be used here to define the divide between compression and tension in the

cross-section will be the angle b which, as seen in Fig. 5, represents the half-angle with vertex at
the center of the rod’s cross-section, such that 2b is fully subtended by the tensile region of the
cross-section. In order for the net force on the cross-section to remain compressive, the angle b
will fall in the range of 0 (full compression) to p=2 (equal compression and tension). When the rod
cross-section is in full compression (b ¼ 0) and in the absence of shear stress, the axial force f in
the rod will be its maximum limiting value,

f max ¼ YA0. (11)

In general, however, the fraction of the rod diameter under compression may be given as

xR

D
¼
1

2
1þ cosbð Þ (12)

which dictates that xRXD=2 always. The net compressive force on the cross-section, relative to
fmax, is given through integration as

f

f max
¼

s
Y
1�
1

p
2b� sin 2bð Þ

� �
, (13)
β, δ (deg)
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Fig. 5. Schematic depiction of variables b and d; along with a graphical depiction of their influence upon the respective
net rod and target forces, f and F.
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as depicted in Fig. 5. Similarly, a specification of b will define not only the axial rod force, but also
the moment about the cross-section’s neutral axis (the diameter dividing the cross-section in two
equal semicircles):

M

f maxD
¼

s
Y

2

3p
sin2 b. (14)

The rod’s net moment has been nondimensionalized by the product of the limiting rod force and
rod diameter. Because the axial stresses are acting perpendicular to the cross-section, and point O
in Fig. 2 was defined to represent the intersection of the rod’s central axis with the target surface,
the momentM about the cross-section’s neutral axis given in Eq. (14) is identical to the moment
of these stresses acting about point O. In the sense of Fig. 2, the momentM will always be positive
in magnitude.
In addition to the angle b exerting influence upon the axial force and moment, the axial-stress-

state magnitude s in the rod plays a role, as well. While the basic tenet of a plastic hinge requires
the stress state at all points in the cross-section to be at yield, the presence of a multiaxial stress
state (e.g., the presence of shear stress t) will lower the axial component s below the value of yield
stress Y. In particular, for the biaxial stress state envisioned, the relationship between s; t; and Y
is governed from standard theory as

t
Y

¼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

s
Y

� 	2r
, (15)

where c ¼ 1=2 for materials obeying a Tresca yield condition, or c ¼ 1=
ffiffiffi
3

p
for when the von

Mises yield condition is applicable. It is this shear stress t; assumed for simplicity to be uniformly
distributed over the cross-section, which comprises the shear traction T depicted in Fig. 2,
according to the relation

T ¼ tA0. (16)

2.3.2. Stress field in target

As cited already, the interaction zone where the ricocheting rod and target interact is assumed
to be limited to an elliptical footprint formed by projecting the rod’s circular cross-section onto
the target surface. Such an ellipse has an eccentricity of sin y and area A0= cos y: The center of this
ellipse is denoted as point O, and also lies along the rod’s axis of symmetry. When the target
response is elastic, the interaction footprint represents (within the bounds of elastic deformation)
the actual surface over which the compressive target stress sT may be applied to produce a net
target force F normal to the target surface.
The model also allows for a nonelastic target response, in which the net target force F is applied

at an angle Z with respect to the target normal, as shown in Fig. 2. This condition is intended to
represent the case where the target surface, as a result of the interaction with the rod, develops a
significant surface gouge. While, in reality, the actual stress increments are applied normal to this
continuously varying gouge surface, the idealization here is that the bearing surface of the gouge
may be effectively represented by a secondary ellipse, which is canted at an angle Z with respect to
the interaction ellipse on the target surface and whose normal projection is exactly onto the
interaction ellipse on the target surface. This secondary ellipse (the bearing surface) will always be
smaller than (or equal to) the interaction ellipse on the target surface. Its area is given by
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A0 cos Z=cos y; with minor axis of length D and major axis of length D cos Z=cos y: When Z is
identically zero (the elastic case), the target’s bearing surface and the interaction ellipse coincide.
Thus, the maximum force that may be applied by the target to the ricochet bearing surface will be
given as

Fmax ¼ HA0
cos Z
cos y

. (17)

Eq. (17) reveals that all other things equal, under this idealization, the allowable target force
diminishes by a factor of cos Z when the target is gouged. While it might seem that such
configurations are less prone to ricochet because of the lesser forces that can be supported, the
reality is that the reorientation of the target force’s line of action by an angle Z may actually
decrease the magnitude of force required for ricochet to an extent where an elastically untenable
ricochet becomes viable if the target is permitted to gouge.
While the true interaction no doubt produces a complicated stress field on the bearing surface,

the stress-field idealization employed for the target in this analysis is two-fold: that any stress
applied on the target’s planar bearing surface will be a uniform normal compressive stress of
magnitude sT; but that the actual area upon the elliptical bearing surface over which this normal
compressive stress is applied could be a truncated fraction of the total bearing ellipse, with the
truncation line being drawn parallel to the minor axis of the elliptical bearing surface (Fig. 6).
Analogous to the technique used to define the stress state in the rod’s cross-section, the angle 2d00

can be defined as the central angle fully subtended by the truncated region of the bearing surface
θ

σT

+

D/cosθ

xT

Oη α

D cosη /cosθ

Fig. 6. Detailed stress field (sT) imposed along elliptical bearing surface between target and rod.
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ellipse. If the truncated region encompasses the trailing edge of the ballistic interaction, such that
the net force is skewed to the leading edge of the bearing surface, a net positive momentMT will
be applied about center of the bearing surface ellipse (and thus about point O). If the truncation
encompasses the leading edge of ballistic interaction, the target moment MT about O will have
negative sign.
When the bearing surface is projected normal to itself upon the interaction ellipse on the target

surface, the bearing surface angle d00 becomes, in the projection, d0; according to the relation
tan d0 ¼ tan d00 cos Z: Likewise, when this truncated interaction ellipse is projected along the rod
axis to a plane perpendicular to the rod’s axis, the interaction ellipse transforms to a circle, and
the truncation angle d0 becomes d in this circle, according to the relation tan d0 ¼ tan d cos y:
These geometric transformations from d00 to d; by way of the combined transformation tan d ¼

tan d00 cos Z=cos y; permit the mathematical relations developed for circular cross-sections in
Eqs. (12)�(14) for the rod to be applied analogously to the elliptical bearing surface of the target,
with a few notable differences. For one, while the rod cross-section has zones in compression and
tension, the target’s bearing surface has zones in compression or alternately stress free. Secondly,
the angle b in the rod equations was limited in range from 0 to p=2; in order to constrain the rod
to a net positive force f, whereas the range of d may span from 0 to p while still keeping the net
target force F in compression, as depicted in Fig. 5.
In terms of the transformed truncation angle d and normalized by the limiting target-bearing

force Fmax, the force applied to the truncated bearing surface is

F

Fmax
¼

sT
H
1�

1

2p
2d� sin 2dð Þ

� �
, (18)

as shown in Fig. 5. Analogously, the magnitude of the moment of the target-bearing stresses
about point O is given as

MTj j

FmaxD cos Z=cos y
¼

sT
H

1

3p
sin2 d. (19)

Here, the target moment is nondimensionalized by the product of the limiting target force and
bearing surface’s major-axis dimension. Again, the actual sign of the moment depends on whether
the target stresses are skewed to the leading edge of the bearing surface (positive MT) or to the
trailing edge (negative MT).
Finally, the fraction of the major axis from the target’s interaction footprint that is under load

is given by

xT

D= cos y
¼
1

2
1þ cos dð Þ. (20)

2.3.3. Strain field in rod
The strain field in the ricocheting rod may be estimated from the geometry of the hinge. The

distances s1 and s2 from the center of curvature of the hinge to the leading and trailing edges of the
hinge were calculated in Eqs. (9) and (10), and shown in Fig. 3. The neutral fiber (line of zero
stress), at the leading edge of the hinge, is therefore at a radius of curvature of s1+xR (where xR is
defined in Eq. (12)). Similarly, the neutral fiber at the trailing edge of the hinge, in the absence of
axial stress, is at a radius of s2+D/2.
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Certain quantities, averaged over the plastic hinge, may be developed. The radius of curvature
to the average neutral fiber may be given by R, defined as

R ¼
ðs1 þ xRÞ þ ðs2 þ D=2Þ

2
. (21)

Because the flow in the hinge turns through an angle of p=2� yþ a; the estimated length of the
neutral fiber over the extent of the hinge is

l0 ¼ Rðp=2� yþ aÞ. (22)

The radius of curvature of the neutral fiber, over the extent of the hinge changes by a value of

DR ¼ ðs1 þ xRÞ � ðs2 þ D=2Þ. (23)

Thus, as a material element traverses a length l0 over the length of the hinge, it distorts in the
transverse direction by a distance DR: The tensorial plastic shear strain (i.e., one-half the total
shearing angle) that occurs within the hinge is therefore

�xy ¼
1

2
tan�1

DR

l0

� �
. (24)

Turning to the normal strain components, the average radius of curvature to the rod fiber under
greatest compression (along those fibers closest to the center of curvature) may be given by s̄;
defined as

s̄ ¼
s1 þ s2

2
, (25)

while the average radius of curvature to the rod fiber under greatest tension (along those fibers
farthest from the center of curvature) is s̄ þ D: Thus, the maximum compressive plastic strain in
the hinge may be given as

�cx ¼ lnðs̄=RÞ, (26)

while the maximum tensile plastic strain is specifiable as

�tx ¼ ln½ðs̄ þ DÞ=R�. (27)

Because the neutral bending fiber in the rod, at radius of curvature R, will always be closer to the
tensile boundary of the rod’s cross-section (in order to keep the rod in net axial compression), the
maximum compressive strain will always exceed in magnitude the maximum tensile strain. Thus,
the maximum equivalent plastic strain in the rod (assuming plastic incompressibility) occurs in the
compressed fiber of the rod closest to the hinge’s center of curvature, and may be given as

�̄max ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�c2x þ ð4=3Þ�2xy

q
. (28)

By comparing these calculated strain values within the plastic hinge to the rod material’s strain-to-
failure properties, an indication may be obtained of whether the ricocheting rod is likely to remain
an intact rod or break into a spray of deflected fragments.
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2.4. Bounding constraints (inequalities)

The following constraints provide bounds on some of the variables. While not diminishing the
number of problem unknowns, these constraints nonetheless aid the solution by narrowing the
domain over which valid solutions may be sought.

2.4.1. Flow turning angle

The total flow-turning angle p=2� yþ a of a ricocheting rod is limited to an angle less than or
equal p=2: This may be restated as

apy. (29)

The basis for this constraint is that, from the perspective of simple momentum transfer, the
propensity of an impacting rod to dwell (i.e., flow-split, or pancake) on the target surface (with
individual material particles turning through an angle p=2 or less would prevail before a rod
would tend to ricochet through an angle greater than p=2:
It was earlier shown that xRXD=2: Additionally, with Eqs. (10) and (29), it may now be shown

that s1Xs2: One may thus conclude that the transverse (shearing) displacement in the hinge, DR;
from Eq. (23) will always be positive (implying a net counter-clockwise shearing moment in the
sense of Fig. 2). Such a conclusion implies that the shearing traction T on the plastic zone must
always be positive in magnitude in order to produce the net counter-clockwise shearing moment
about O per sense of Fig. 2.

2.4.2. Angle of reflection
The angle of reflection of a ricocheting rod will be less than or equal to the angle of striking

incidence. This criterion may be stated as

app=2� y. (30)

The basis for this constraint is that, for a strength-free rod made to ricochet off a rigid target, the
angle of reflection will exactly equal the angle of incidence. The addition of rod strength to the
picture can only mitigate the angle of flow turning, which will therefore limit the angle of ricochet
reflection to a value at or below the angle of striking incidence.

2.4.3. Target force line-of-action
When the equations were developed for the stresses and forces developed by the target upon the

ricocheting rod, an artifice was developed for the case of a plastic target response, in the form of a
target-load bearing surface, canted by an angle Z with respect to the target surface. It was noted
that the bearing surface was an idealization to represent the case where the target surface develops
a significant surface gouge. While, in reality, actual force increments are applied normal to this
continuously varying gouge surface, the idealization posits that the target stresses are coaligned,
perpendicular to the canted, planar bearing surface. Such an idealization permits rapid integration
of the net force F from the idealized stress field.
The artifice of this canted bearing surface notwithstanding, the geometry of an actual gouge

is seen to place an additional constraint on the ricochet process. If an actual (assumed sym-
metric) ricochet gouge forms, such that an angle x is formed at the gouge lip with respect to the
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target-surface plane, then the surface normals throughout the gouge will span the angular range of
�x to þx with respect to the target normal (Fig. 7). The line of action of the net target force F
(which acts at angle Z), being an integration of the normal forces increments dF over the actual
bearing surface (the gouged crater) must also fall in the range �x to þx; since there are no force
increments having a line of action outside this range. Thus, jZjpx:
With respect to the trajectory of material exiting this gouged crater, the material scraping its

way along the shallow crater toward the trailing edge of the gouge would exit the gouge with a
trajectory aligned at an angle x (or greater than x if it ‘‘bounced’’ off the gouge) with respect to the
surface of the target. This exit trajectory is defined by the angle a; and thus aXx:
Combining these two results yields an additional bounding constraint on the solution of the

ricochet equations, namely

Z
�� ��pa. (31)
2.5. Definitive constraints (equalities)

With the descriptions of the stress states in the rod and target, one may envision that
substitutions could be made into the original three momentum and moment-of-momentum
equations, so that the original set of unknown variables (f, F, T, M, MT, a; Z) would be replaced
with the following six unknown variables: s; b; sT; d; a; and Z (note that t is not an additional
unknown, since the knowledge of s completely defines it in terms of Eq. (15)). Three additional
definitive constraints are required to bring the number of equations in line with the unknowns.
The problem transformation from expressions in force to expressions in stress facilitates the
expression and justification of these constraints.
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To understand, however, the rationale for these constraints, one must first understand how the
moment of momentum equation (5) drives the ricochet solution down one of two primary paths,
which the author terms ‘‘high-flux’’ and ‘‘low-flux’’ solutions. Each of these two paths brings a
different set of forces into play. The term xfV dm/dt represents the moment about O that results
from the momentum efflux of material as it exits the hinge (momentum entering the hinge has no
moment because of how point O is defined). While the moment of the efflux can, in the theoretical
sense, diminish to zero if the rod is, for example, without strength and ricochets at the striking
angle (when a ¼ p=2� y at which point xf approaches zero), the moment of the efflux is always
nonnegative and largely determined by the striking velocity V of the rod. All other terms in this
equation are moments that derive from applied forces. While MT can be positive or negative,
depending on the skew of the target stress, the terms M and Txs are have been shown strictly
nonnegative, owing to the kinematics of material flow through the hinge.
When the momentum efflux is large, the resulting moment must be counterbalanced by the rod

momentM and a positive target momentMT. The presence of shear traction in the rod T actually
works against the high-flux balance of moments, and thus hinders the formation of a ricochet
hinge. On the other hand, when the momentum efflux is small, the problem approaches that of a
quasi-static nature, and a natural balance must be established in which the rod moment M is
countervailed by a negative target momentMT and/or shearing moment Txs. It is not surprising,
therefore, that the definitive constraints to be introduced will be different for high-flux and low-
flux conditions. In the algorithmic implementation, the sign of the target moment MT is used to
differentiate the high-flux condition (MT40) from the low-flux condition (MTp0).

2.5.1. High-flux constraints

The definitive high-flux constraints are as follows:

high-flux constraint 1:s ¼ Y , (32)

high-flux constraint 2: either a ¼ 0 or sT ¼ H, (33)

high-flux constraint 3: either Z ¼ 0 or d ¼ 0. (34)

The first constraint reflects the observation that the presence of shear traction hinders the
formation of a high-flux plastic hinge. It is thus assumed that t will be equal to zero in the high-
flux condition. And when t ¼ 0; it follows directly that s ¼ Y :
The second constraint reflects the understanding that, for high-flux conditions, increasing sT

and/or a will serve, respectively, to balance and/or mitigate the moment of momentum that results
from the high rate of rod material flowing through the control volume. However, only the increase
of sT serves that balance while simultaneously minimizing the plastic work done on the deforming
rod. Increasing a represents an increase in the overall plastic work rate, as the total turning of the
rod that is continuously fed through the hinge is given by the angle p=2� yþ a: Thus, in
achieving the required moment-of-momentum balance, the target will first attempt to employ a
redistribution of elastic target stresses while retaining the a ¼ 0 condition that minimizes plastic
work on the rod. Only when the target stress redistribution (in both magnitude and skew) are no
longer able to, on their own, provide that balance (implying the target stress has reached its
limiting value of sT ¼ H) will the target attempt to achieve the balance through an increase in a.
The second high-flux constraint captures this transitional behavior.
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Note however, as a is increased, that the ricochet solution is still elastic from the perspective of
the target because, while the target stress of the bearing surface may be at the level of imminent
yield (sT ¼ H), the area of the bearing surface is still less than the full elliptical footprint if the
target stress is skewed (as defined by a nonzero value of d). Were the target to be deforming
plastically, the complete interaction ellipse would necessarily be engaged in the target. And this
brings us to the third high-flux constraint, which defines the nature of plastic ricochet as possibly
occurring only when the full interaction ellipse is engaged by the target. And thus, a ricochet
solution is either elastic (Z ¼ 0) or else the full interaction ellipse is engaged (d ¼ 0).
Note also that the target-force-line-of-action bounding constraint jZjpa; discussed in the prior

section of this report, guarantees that for a transition to target plasticity to occur (Za0), there
must already exist a level of rod rebound (a40).
2.5.2. Low-flux constraints

The definitive low-flux constraints are as follows:

low-flux constraint 1: a ¼ 0, (35)

low-flux constraint 2: Z ¼ 0, (36)

low-flux constraint 3: either s ¼ Y or d ¼ 0. (37)

As mentioned in the discussion of the high-flux condition, increasing a represents an increase in
the work performed in deforming the ricocheting rod. Its introduction in the high-flux solution
was predicated on the inability of the target stress to produce enough moment about O to counter
the moment produced by the a ¼ 0 momentum flux. In low-flux cases, however, the flux moment
is, by definition, small. And so increasing a beyond zero does little to affect the moment balance
(i.e., its introduction is not necessary to achieve the moment balance, as in the high-flux case), but
does so at the expense of increased plastic work on the rod. Thus, the first constraint reflects the
intent to minimize the work performed on the ricocheting rod, since it does not otherwise preclude
a balance to the moment-of-momentum equation.
The second constraint follows immediately from the first, based on the prior developed target-

force-line-of-action bounding constraint (jZjpa).
The third constraint is not technically based, but reflects the realization that the current model,

for low-flux solutions, cannot judiciously ascertain what proportion of counter-clockwise moment
(about O) arises from shear stress in the rod vs. stress skewing in the target. The practical solution
embodied in this constraint is that the counter-clockwise moment may arise from one source, or
the other, but not both.
In light of this third constraint, the methodology attempts two solutions for these low-flux

cases: one that solves for a negative MT while holding T equal to zero (implying t ¼ 0; and thus
s ¼ Y ); and the other that solves for a positive T while holding MT equal to zero (implying sT
uniformly distributed over the interaction footprint, and thus d ¼ 0). If both approaches provide
a viable ricochet solution, that which is seen to perform the smallest amount of elastic work on the
target is adopted as the preferred ricochet solution. Since, for elastic deformation, the target
displacement will be proportional to the elastic strain and thus proportional to the stress, the
criterion for minimum work on target is that solution which minimizes FsT:
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2.6. Ballistic response criteria

The ascertainment of a viable ricochet solution depends on the successful solution of
Eqs. (3)�(5), subject to the definitions, constraints and assumptions inherent in the supporting
equations that followed. Even so, a solution strategy is not plainly obvious because of the highly
nonlinear nature of coupled equations, which are nonetheless algebraic in nature. It is not the
intent of this report to lay out a flow chart of algorithmic details, but several comments are in
order here with regard to putting ricochet in the larger ballistic context.
Whether or not a viable ricochet solution is found, there exists the possibility that an alternative

nonpenetrating ballistic solution, involving dwell of the penetrator, may be likewise viable. While
one could adopt an approach that, for example, looks to the respective target stress to gauge
whether ricochet or dwell is more likely, the current model instead adopts the hypothesis that a
ricochet solution is always preferable to a dwell solution, since ricochet will involve less plastic
work in bending the penetrator than dwell would in eroding it. In either event, the target stress
must remain on the verge or below the target-resistance value of H in order to be a viable
nonpenetrating solution.
There will also exist conditions when a high-flux, low-flux, or dwell solution is sought, but for

which no viable nonpenetrating (ricochet or dwell) solution is found. In these cases, the
appropriate conclusion is that the ballistic scenario proceeds as a penetration event.
3. Model solutions

In this section, model results will be displayed that demonstrate the capacity of the model. In
the results presented here, the Tresca yield criterion has been assumed for the penetrator material,
such that c ¼ 0:5 in Eq. (15).
Table 1

Ballistic-response and ricochet mode designations

Ballistic response modes

Pen. penetration

D dwell (flow splitting)

‘‘xyz’’ ricochet designation (as follows):

x (rod response)

B bending 0ofp0.5fmax ðb\66�Þ
C compressive 0.5fmaxofofmax ðbt66�Þ

y (target response)

R rigid sToH ; a ¼ 0; Z ¼ 0 ðdX0Þ
Y at yield sT ¼ H; aX0; Z ¼ 0 ðdX0Þ
P plastic sT ¼ H; a40; ZX0 ðd ¼ 0Þ

z (flux mode)

(blank) high-flux t ¼ 0; MT40
* low-flux 1 t40; MT ¼ 0 ðd ¼ 0Þ

— low-flux 2 t ¼ 0; MTp0 ðs ¼ Y Þ
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One method of presentation that is very informative is a phase diagram of ballistic response, in
which the predicted ballistic response is plotted on a two-dimensional graph that spans the
engagement obliquity on one axis and another ballistic variable of interest on the other axis. The
ballistic responses that one observes in these phase diagrams are given by the 2- or 3-letter
designations described in Table 1. These phases describe whether the ballistic engagement is
predicted to result in penetration, dwell, or ricochet. If it results in ricochet, the ricochet mode is
more precisely delineated in terms of rod response, target response and momentum-flux mode.
While the target-response and flux-mode designations are technically very specific, the rod-
response designation is somewhat arbitrary and is meant to denote whether the stress-state in the
rod may be primarily characterized by bending or compression. The arbitrary cutoff selected is
that if the axial force in the rod exceeds 50% of the theoretical maximum value of fmax, then the
rod’s mode is denoted as ‘‘compressive.’’ Otherwise, the mode is denoted as ‘‘bending.’’ This 50%
cutoff value, in the absence of shear traction, corresponds roughly to a value of b equal to 661.
Fig. 8 shows, for example, the ballistic phase diagram as a function of target resistance and

impact obliquity for the impact of a steel rod (rR ¼ 7800kg=m3) of strength 1GPa, when
impacting a target at 1000m/s. The figure shows several trends including a critical engagement
angle (to produce ricochet) that drops from approximately 851 to below 501 as the target
resistance is increased from 0.1 to 9GPa. Beyond a resistance of 4.9GPa, penetration is no longer
possible, as the rod either dwells upon or ricochets from the target surface.
In Fig. 9, the same rod density and impact velocity are examined, though this time with a fixed

target resistance of 2GPa, and with the variation in rod strength studied between limits of 0.01
and 10GPa. The transition from penetration to ricochet is strongly cusped at a rod strength level
of �0.2GPa. Above this rod strength, the target resistance H is the primary determinant of the
H (GPa)
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ricochet threshold. However, on the low-Y side of the cusp, it is the rod’s relative lack of strength
that governs the shape of the ricochet curve, as it tries to penetrate in almost a liquid-jet-like
manner. Because a rod’s speed remains unchanged during ricochet, stagnation stresses do not play
a role. And thus, from Eqs. (11),(13) and (14), a strength-free rod is unable to exert axial force f or
bending moment M toward balancing the momentum and moment-of-momentum equations.
In Fig. 10, a more complicated result (i.e., with many ricochet response modes) is presented

wherein the striking velocity V is varied for the impact of a hypothetical aluminum rod
(rR ¼ 2700kg=m3) with strength Y ¼ 1:2GPa onto a target possessing a resistance of H ¼

1:25GPa: Figs. 10a–c show, respectively, the rod response, target response, and flux mode of the
ricochet solution, whereas Fig. 10d integrates these results onto a single graph. While it may seem
unusual to predict ricochet at very small obliquities, for cases when the impact velocity is small,
the experiments of Reid et al. [5] show exactly such ricochet behavior at impact obliquities of 101
and even for ‘‘normal’’ impacts. While Reid et al. called these results ‘‘buckling’’ rather than
‘‘ricochet,’’ ricochet would tend to be a better description, as buckling, used in the traditional
sense, would occur midlength along the column. Their data, by contrast, clearly shows the rod
deformation at the striking end of the rod, where one would expect a hinge to form. The residual
curling of the rod tip they observe is likely an artifact of a residual-stress-induced moment as the
rod material exits the hinge. Such residual moments are not addressed in the theory presented
here, as the rod material is explicitly assumed stress-free as it exits the hinge. In any event,
predictions of ricochet at small obliquity should not be a cause of undue modeling concern.
While the diagrams of Figs. 8–10 depict the ricochet, dwell, or penetration phases that are

predicted by the model for various engagement conditions, more detailed data are also available
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from the model. Take for example, the problem modeled in Fig. 10, and confine the examination
to a striking velocity of 700m/s. For this striking velocity, Figs. 11a–d depict many of the relevant
ricochet variables as a function of the striking obliquity y: Fig. 11a depicts the angle of ricochet
from the target surface, a; and the target force line of action angle, Z: Fig. 11b depicts the target
force and stress, as well as the net rod force, all of which have been nondimensionalized by their



ARTICLE IN PRESS

θ (deg.)

θ (deg.) θ (deg.)

θ (deg.)

40 45 50 55 60

, η
α

 (
de

g.
)

0

5

10

15

20

25

30

η

α

BP    BY    BR

40 50 60 70 80 90

N
on

di
m

en
si

on
al

iz
ed

 F
or

ce
, S

tr
es

s
0.0

0.2

0.4

0.6

0.8

1.0

σT / H

F / Fmax

f / fmax

BP BY  BR

40 50 60 70 80 90

st
ra

in
 c

om
po

ne
nt

 m
ax

im
a

-0.6

-0.4

-0.2

0.0

0.2

0.4

εx
c

εxy

εx
t

BP  BY   BR

40 50 60 70 80 90

R
el

at
iv

e 
St

re
ss

-T
ra

ns
iti

on
 L

oc
at

io
n

0.0

0.2

0.4

0.6

0.8

1.0

xR / D

xT / (D /cosθ )

D

D/cos (θ )

+

TARGET FOOTPRINT

xR

D+−

   ROD 
CROSS-SECTION

xT

BP    BY      BR

(a) (b)

(c) (d)

Fig. 11. Ricochet variables as a function of y for the case where V ¼ 700m=s; rR ¼ 2700kg=m3; Y ¼ 1:2GPa; and
H ¼ 1:25m=s: The figures depict (a) ricochet and line-of-force angles, (b) target forces and stresses, (c) strains, and (d)
locations of stress-transition.

S.B. Segletes / International Journal of Impact Engineering ] (]]]]) ]]]–]]] 23
limiting value. Fig. 11c shows the strain component maxima that would result from the ricochet
predictions and Fig. 11d shows the stress-reversal location in the rod cross-section (from tension
‘‘�’’ to compression ‘‘+’’) and the stress-truncation location in the target interaction ellipse (from
compression ‘‘+’’ to stress-free ‘‘ ’’). At the top of each of these figures are the letter designations
BP, BY and BR, denoting the respective regions of ricochet mode associated with the graph
variables. The disparity between the target force, F/Fmax, and target stress, sT=H; curves is
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indicative of a target force that is not acting over the complete elliptical bearing surface [in fact,
ðF=FmaxÞ=ðsT=HÞ represents the fractional area of the target’s elliptical bearing surface that is
subjected to sT].

4. Observations on model behavior

4.1. Ricochet-mode transition

Though the rationality of model response was not assured during model development, the
model was subsequently observed to transition smoothly from one ricochet mode to another. For
example, in the transition from a yielding to a rigid target, the ricochet angle drops smoothly to
zero (Fig. 11a). Likewise, on the verge from plastic to yielding ricochet, the line of target-force
action smoothly transitions towards Z ¼ 0: Fig. 11b similarly shows continuous behavior in the
target forces and stresses. However, a small dislocation is observed in the net rod force across the
plastic-to-yielding transition. This dislocation in net rod force arises from a similar jump in xR
(Fig. 11d). Likewise, a jump in xR will cause a dislocation in the rod strains, as well, as observed in
Fig. 11c. The origins of such a dislocation are not immediately clear.
Another exception to smooth transition behavior is between the low-flux modes denoted ‘‘�’’

and ‘‘�’’. The jagged response, seen in Fig. 10a, across the compressive vs. bending transition of
the rod, is specifically attributable to the flux-mode transition from ‘‘�’’ to ‘‘�’’. This jagged
response is understandable from a modeling point of view, given the model’s simplifying ‘‘either/
or’’ assumption embodied in low-flux constraint 3. A truly accurate low-flux description would,
without doubt, entail simultaneous elements of both rod shear and target moment, explicitly
precluded by the low-flux constraint 3.
Fortunately, none of these transition dislocations was observed to produce any aberrant

dislocations in the ricochet vs. no-ricochet predictions, instead limiting themselves to dislocations
in the predicted mode of ricochet or some of the model variables of ricochet.

4.2. Behavior of strain

The use of strain calculation was cited earlier as a means of determining whether the ricocheting
rod is likely to remain an intact rod or break into a spray of deflected fragments. The possibility of
either of these results was empirically demonstrated very clearly by Jonas and Zukas [2], wherein
rod fracture during a ricochet event could be brought on with a slight increase in striking velocity.
Their observation is compatible with the current model behavior, which shows the ricochet angle a
increasing with increasing striking velocity (all other things equal, once the target reaches the yield
condition). Plastic strain, in turn, increases with increasing a; and so likewise the propensity for
rod failure during ricochet increases with striking velocity. Even in the absence of an increasing a
(i.e., when the target is rigid and a remains zero), the maximum strain in the rod increases with
increasing striking velocity, because of a shift in location of the neutral bending fiber of the rod.

4.3. Influence of rod aspect (L/D)

In Tate’s ricochet model [3], rod aspect is explicitly tied into the prediction of ricochet, since the
model posits that, for ricochet to occur, the rigid body constituting the rod must rotate away from
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a penetrating orientation. The longer the rod length (for a fixed rod diameter), the more difficult
this task becomes, as more rotational inertia must be overcome in that rotation process. In
contrast, the current model carries no explicit influence of rod length or aspect. This absence
comes from the assumptions adopted by the model that govern the nature of ricochet. In
particular, the current model calculates the ability to sustain ricochet in a steady-state capacity (by
way of a plastic hinge), and in that sense the model applies to rods of arbitrarily large length.
In reality, ricochet is likely a combination of these behaviors. While a hinge may be trying to

establish itself in the moments following the oblique impact of a rod upon target (current model
assumption), simultaneously there are bending moments and shear forces working to rotate the
rod away from a penetrating orientation (the Tate assumption). It seems likely that as rod aspect
(L/D) becomes large, assumptions akin to those in the current modeling must prevail, whereas the
opposite seems likely for rods of low aspect (where rod rotation becomes easier than plastic-hinge
formation). If this is the case, then there exists an intermediate range of rod aspect ratios where
neither of the two approaches wholly suffices.
While no constructive solution is offered here to address (or even define) this intermediate range

of rod aspect ratios, it should be obvious that it is never harder to ricochet a finite length rod
compared to its arbitrarily long counterpart. And in that sense, the predictions of the current
model should represent a conservative estimate of the ricochet threshold.

4.4. Nose shape effects

It has already been mentioned how the nose shape of a rod can play a key role in ricochet. A
conical nose, for example, while conducive to good aerodynamics, is more prone to ricochet than
a flat-nosed projectile, which can ‘‘bite’’ into the target surface more readily. Already mentioned is
how the current model’s methodology does not treat those initial moments following impact,
where deforming rod-nose geometry is a key influence. Rather, the current model attempts to
answer the question, should ricochet be initially established, of whether the rod and target stresses
can maintain this condition indefinitely. In contrast, models like those of Tate [3] and Rosenberg
et al. [8] account for a nose-shaped effect, but only for the very specific case of a square-cross-
section rod with a flat nose.
For cases with a hard target material (relative to the rod), the ability of the rod nose to ‘‘bite’’

into the target is minimized. Thus, differentiation in rod response as a function of nose shape is
perhaps lessened, as a result. But for engagements with hard rods (relative to target), the influence
of nose shape must remain a significant one, and the current sustained-ricochet analysis will not
substitute for appropriate analysis of nose-shape influence.

4.5. Interaction footprint influence

One of the assumptions comprising the current ricochet model is the size of the interaction
footprint where rod and target material physically interact. In the model, this zone is defined as an
elliptical area formed by the projection of the rod’s cross-section, along the rod’s trajectory, onto
the target surface. For a rigid-target ricochet scenario, this interaction zone definition seems
logical and appropriate, as it defines all the points on the target’s surface that are in the direct path
of oncoming rod material.
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However, the situation becomes murkier for the case of ricochet when the target no longer
remains rigid. In the model, the possibility of a gouged bearing surface between rod and target is
allowed for, yet the specified size of the interaction footprint remains unchanged. In reality, and
especially for softer targets (e.g., aluminum), the target gouge that can accompany a ricochet can
be quite significantly larger than this envisioned interaction footprint. The effect of permitting a
larger interaction footprint in the model is that some engagement conditions, for which ricochet
would previously have been precluded, are now capable of it. This premise was successfully play-
tested in the model, though results are not presented since no rational scheme has yet been
developed to suggest how large the interaction footprint might logically be extended, and under
what conditions.
5. Simplified model with closed-form solution

One of the primary drawbacks of the model, as described, is the inability to present the critical
obliquity for ricochet in terms of a closed-form solution. A remedy is sought to this deficiency,
through a judicious application of simplifying assumptions to the model. While not capturing the
complete nuance of the full model, the intent here is for the simplified model to, nonetheless,
capture the essence of the phenomenology intrinsic to plastic-hinge ricochet.
Examine the three founding equations to the model (i.e., Eqs. (3)�(5)). Eq. (3) is constrained by

the resistance of the target, H, which limits the allowable magnitude of the target-interaction
force, F. Eq. (4) is constrained by the requirement that the net axial rod force f be compressive
(40), while at the same time being limited in magnitude to a force governed by the rod strength Y.
However, the nature of the plastic hinge is that all particles in the rod, as they enter hinge, will be
in a state of yield. The net magnitude of force f is therefore, not determined by the stress state in
the hinge (which is always yielding), but rather by the location of the so-called neutral fiber, which
divides the compressively yielding side of the rod’s cross-section from the side that is yielding in
tension. In the typical case, f is primarily a driven rather than a driving quantity. However, there
are exceptional cases where Y is so small that it cannot support the magnitude at which f
otherwise needs to be driven to sustain ricochet. For example, the low-Y solutions depicted in Fig.
9 show a sharp change in behavior below the cusp at Y ¼ 0:18GPa: The behavior in this domain
is driven by the allowable magnitude of f.
Eq. (5), the moment equation, is perhaps the weakest link of the three equations. Admittedly,

the force equations must make certain assumptions about the size of the interaction footprint in
order to link the material strengths to the permissible forces f and F. However, the moment
equation, in addition to these same assumptions, must also assume the stress distribution within
that interaction footprint as well as the plastic-hinge geometry. Therefore, if a simplified treatment
was to discard one of the governing relations, the moment equation would make the best
candidate. It is this approach that is adopted for the simplified solution.
Still, the number of unknowns needs to be significantly reduced in order to solve the equations.

The easiest first step is to assume that the shear traction T is identically zero, since its introduction
into the general model was predicated on the need to provide a moment balance for certain low-
flux cases. With the moment balance eliminated, the need for T is readily dispensed with. Next,
judging from the relatively small contribution that target-gouging ricochet had in the solved
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examples described for the full model (not to imply that gouging ricochet is not a significant
possibility in reality, but rather that it did not appear to manifest greatly in the model), elastic-
target ricochet would be a reasonable simplifying assumption, implying Z ¼ 0: A simplification
that is harder to justify (which is nonetheless adopted) is that there is no rebound of the rod from
the target surface following ricochet, such that a ¼ 0:
With these assumptions, the force equations (3) and (4) may be solved independently and the

results combined simply. First consider the target-force equation (3), under the simplifying
assumptions T ¼ a ¼ Z ¼ 0:

F tan y ¼ V _m. (38)

The upper-limiting target-force value, Fmax, at the point of incipient yield is known from Eq. (17),
while Eq. (6) defines the axial momentum flux rate in the rod. Applying the constraint FmaxXF ;
for the case where Z ¼ 0; it may thus be deduced from Eq. (38) that

sin y
cos2 y

X
rRV2

H
. (39)

The positive-y solution to Eq. (39) is

sin yCRITðF ÞX�
H

2rRV2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

H

2rRV2

� �2s
. (40)

This is the criterion, under the simplifying assumptions, that will guarantee that the target’s
resistance is not exceeded in achieving a ricochet.
On the other hand, it must simultaneously be guaranteed that the net rod force f remains

between the bounds 0 to fmax. Consider then, the rod-force equation (4), also under the
simplifying assumptions T ¼ a ¼ Z ¼ 0:

f sin y ¼ V _mð1� sin yÞ. (41)

For the lower constraint, fX0; Eq. (41) would indicate that yCRITðf Þp90�: This result merely
indicates that a negative f is not even possible under the simplifying assumptions. For the upper
constraint f maxXf ; it may be deduced from Eq. (41), with the use of Eqs. (6) and (11), that

sin yCRITðf ÞX 1þ
Y

rRV2

� ��1

. (42)

This is the criterion, under the simplifying assumptions, that will guarantee that the compressive
force in the rod does not exceed the permissible limit in achieving a ricochet. However, both Eqs.
(40) and (42) must simultaneously be satisfied in order to facilitate ricochet. Fortunately, the
merging of these two criteria is trivially straightforward, to yield the simple ricochet model as:
Simple model:

sin yCRITXmax �
H

2rRV2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

H

2rRV2

� �2s
; 1þ

Y

rRV2

� ��1
2
4

3
5. (43)

While Eq. (43) achieves only a semblance of the full ricochet model, it does so in a single closed-
form equation that is much more comparable in spirit to the Tate or Rosenberg model forms. To
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see how this model compares to the full model, the engagements analyzed with the full model by
way of Figs. 8–10 are shown in comparison to the simple model in Fig. 12. It is observed that, for
the most part, the simple model trends closely to the full model’s predictions. Those regions where
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the full model shows a greater propensity to ricochet arise from relaxations on the constraint,
which characterizes the simple model, that a ¼ Z ¼ 0: Conversely, those regions where the full
model has a lesser propensity to ricochet vis-à-vis the simple model arise from the added
constraint that the moment equation puts upon the target stress field, which is not factored into
the simple model.
One final note is that, even with the simple form of the model, the strain calculations in the

plastic hinge may proceed according to the established methodology. In particular, the kinematic
relations given by Eqs. (9) and (10) may be applied to obtain s1 and s2, all the while incorporating
the a ¼ 0 assumption inherent to the simple model. The net rod force f may be evaluated from the
simplified version of Eq. (4), and b may then be back-calculated from Eq. (13). With b calculated,
the rod’s neutral fiber embodied in the variable xR may be obtained from Eq. (12). Armed with s1,
s2, and xR, the strain relations delineated in Eqs. (21)�(28) may be applied as before to evaluate
the strain, using the result to evaluate the likelihood of a ricocheting rod retaining its integrity or,
alternately, fracturing into pieces.
6. Comparison to other models

It is useful to know how the current model compares to, for example, the Tate [3] and
Rosenberg et al. [8] ricochet models. Already mentioned was the fact that neither of the other
models is able to predict ricochet for engagement conditions that would otherwise meet the
criterion of rigid-body penetration. Beyond this distinction, however, it is still illuminating to
compare behaviors in other ballistic regimes, as well.
Thus, the engagements analyzed with the full model by way of Figs. 8–10 are shown in

comparison to the Tate model in Fig. 13, and in comparison to the Rosenberg model in Fig. 14.
Note that, in addition to the model parameters utilized by the current model, the Rosenberg
model additionally requires the target density, while the Tate model additionally requires both the
target density and the rod’s aspect ratio (L/D). Thus, in the comparisons, the Tate and Rosenberg
models are run against targets of density nominally that of both steel (7800 kg/m

3

) and aluminum
(2700 kg/m

3

). Additionally, the Tate model results are calculated against rods of two aspect ratios
(L=D ¼ 10 and 30), respectively.
For the engagements depicted in Figs. 13a and 14a, in which the target resistance H is varied as

a model parameter, the Rosenberg model and the current model actually track in relative concert.
The Tate model is less sensitive to changes in H, as such changes affect not the interaction force
magnitude (which is given by Y), but only that force’s line of action, via changes in the U/V ratio.
For the engagements depicted in Figs. 13b and 14b, in which the target resistance Y is varied as

a model parameter, the Rosenberg model no longer closely tracks the current model. At low
values of Y, where it was earlier observed for the current model that ricochet is driven by Y, it is
the Tate model that follows somewhat the trend of the current model. For values of Y

immediately beyond the cusp in the current model’s treatment (where ricochet was earlier
observed to be driven by H), the Rosenberg model is observed to briefly track the current model
predictions. However, as rod strength Y is further increased, both the Tate and Rosenberg models
diverge strongly from the current ricochet prediction, as conditions conducive to rigid-body
penetration are approached. When conditions are actually met that would otherwise (i.e., in the
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absence of target obliquity) permit rigid-body penetration (YX3:35GPa against aluminum and
YX5:9GPa against steel), neither Tate and Rosenberg models are able to predict viable ricochet.
For the engagements depicted in Figs. 13c and 14c, it is the striking velocity V that is varied as a

model parameter. While the same basic trend is exhibited by all the models (that of increasing the
critical ricochet angle with increasing striking velocity), there are significant disparities in the
magnitude of the critical ricochet angle, especially as the striking velocity is decreased below
1000m/s. For example, at a 500m/s striking velocity, the current model predicts ricochet for
engagements at �161 obliquity, whereas the Rosenberg model, if applied to a hypothetical
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aluminum target (r ¼ 2700 g=cm3; H ¼ 1:25GPa) would require triple the obliquity, namely 491,
in order to achieve ricochet. The disparity with the Tate model is even greater at that striking
velocity, with critical ricochet obliquities above 601, for rods of L=D ¼ 10 or greater, against
targets over the density range from aluminum to steel.
In general, it would appear that the current model shows a greater propensity to ricochet than

either the Tate [3] or Rosenberg et al. [8] models, most especially the Tate model. However, there
are a number of regimes studied in which the current model behaves in many ways as the simpler
Rosenberg model.
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7. Comparison to data

In the course of this investigation, several experimental studies were undertaken to probe the
realm of ricochet. The results are presented here, and compared with the current ricochet model in
both the full and simple forms, as well as with the models of Tate [3] and Rosenberg et al. [8].
In one study, 14.5mm caliber B32 penetrators were shot against 1.75 in thick (nominal)

aluminum of Brinell hardness (BHN) 110, at various obliquities. The B32 is an armor-piercing
projectile, weighing 63.5 g, consisting of a 53mm, 41 g hardened steel (Rockwell C 65) core
surrounded by a brass jacket. In a related study of B32 penetration [14], this projectile was
successfully characterized as a cylindrical homogeneous steel penetrator (r ¼ 7850kg=m3),
66.5mm long 
 12.45mm diameter, with a yield strength Y of 4.46GPa. That characterization
has been retained for the current study on ricochet. The BHN 110 aluminum target is
characterized with a resistance H ¼ 2:03GPa; in accordance with Tate’s formulation:

H ¼ s
2

3
þ ln

2E

3s

� �� �
, (44)

where E ¼ 75GPa; and s ¼ sULT ¼ 0:363 GPa: Owing to the pointed tip of the rigidly
penetrating B32 projectile, a target shape factor of kT ¼ 0:15 was adopted in the associated
penetration calculation [14].
The results of the 12 tests are described in Table 2, while the data and associated predictions are

shown in Fig. 15. The solid curved line is a prediction of the dividing line between partial
penetration and perforation of the target plate, using a penetration model [14,15] that is unrelated
to the ricochet predictions. It accurately separates the perforation data from the partial-
penetration data. The full-model prediction is shown as a dotted line, while the simple-model
prediction is shown with a dashed line. For striking velocities in the vicinity of 600m/s, either
form of the current model accurately predicts the dividing line between ricochet and penetration.
However, at the 1000m/s striking velocity, the data was more prone to ricochet than indicated by
Table 2

Experimental result for B32 test series

Vs (m/s) y (1) Result

1019 0 Perforation, Vr not obtained

999 0 Perforation, V r ¼ 815 m=s
991 30 Perforation, V r ¼ 726 m=s
538 30 Partial penetration

583 45 Ricochet

1004 45 Perforation, V r ¼ 543 m=s
a

1003 50 Perforation, V r ¼ 561 m=s
a

596 50 Ricochet

1005 55 Ricochet

619 55 Ricochet

595 60 Ricochet

999 60 Ricochet

aProjectile core fractured. Vr obtained via momentum average of residual-fragment velocities.
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the model, with a disparity of roughly 151 between the full-model prediction (67.51) and the actual
(�52.51) critical ricochet obliquity, yCRIT: Interestingly, the simple model prediction, at 61.51, fell
closest to the data, within 101 of the actual critical ricochet obliquity at that striking velocity.
Possible reasons for the disparity might include some or all of the aforementioned ideas, including
short rod aspect ratio, interaction footprint size for hard rods on soft targets, as well as nose-
shaped effects for a rod that is anything but flat-nosed.
By comparison, the Tate and Rosenberg models predict no ricochet for any of these

engagements, because of the rigid-rod nature of the ballistic engagement (i.e., when U equals V,
yCRIT ! 90� in these models). Therefore, despite the current model’s disparity noted with respect
to the data at 1000m/s, the results are actually quite encouraging.
In a second study, 65 g, L=D ¼ 15 WA alloy rods were shot against 2 in thick (nominal)

aluminum (BHN 190), at various obliquities. These hardened rods (Rockwell C 35.5) had
hemispherical noses and were of dimension 102.3mm 
 6.81mm. Their composition was 93%W,
4.9% Ni, and 2.1% Fe. In the modeling, the rod has a density of 17,600 kg/m

3

and a
strength Y ¼ 1:1GPa: The BHN 190 aluminum target (r ¼ 2700kg=m3; E ¼ 75GPa; and
sULT ¼ 0:627 GPa) is modeled with a target resistance of 3.16GPa, in accordance with Eq. (44).
A total of 12 tests were conducted in this phase of the ricochet study.
The test results are given in Table 3, while the data and model predictions are shown in Fig. 16.

The curve dividing the ‘‘partial penetration’’ and ‘‘perforation’’ domains was predicted by a
penetration model of the events [14,15]. For those data which did not exhibit ricochet, this
dividing line prediction accurately characterized all the ballistic data. The full model for ricochet
was used to generate the curve that separates the ‘‘ricochet’’ domain from the others. The actual
data show a significantly greater propensity to ricochet than predicted by the model. There are
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Table 3

Experimental result for L=D ¼ 15 WA-rod test series

Vs (m/s) y (1) Result

691 35 Partial penetration + ricocheta

628 25 Partial penetration

1198 50 Perforation, V r ¼ 986 m=s
b

1293 70 Partial penetration

907 40 Perforation, V r ¼ 255 m=s
b

1402 70 Perforation, V r ¼ 893 m=s
b

937 50 Ricochet

1079 55 Ricocheta

686 15 Partial penetration

1295 65 Perforation, V r ¼ 812 m=s
b

836 20 Perforation

1088 65 Ricochet

aRicochet resulted from rod delving into target and later reemerging out front surface.
bProjectile core fractured. Vr denotes largest velocity among the residual fragments.
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three ricochet data in the 900�1100m/s striking-velocity range that ricocheted at striking
obliquities 10–201 less oblique than the model predicted, with critical ricochet angles as low as 501.
Further, there is one low-obliquity (351) test at 691m/s striking velocity, in which the impacting

rod apparently fractured early in the penetration such that one segment of the rod penetrated the
target partially and embedded itself, while the other segment reemerged through the target surface
after penetrating in a submerged manner (all the while turning its trajectory). This test result is
characterized in Fig. 16 as ‘‘partial penetration+ricochet.’’ Likewise the ricochet datum at
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1079m/s and 551 obliquity also penetrated the target in a submerged manner prior to reemerging
through the front of the target surface. This datum is one that had been predicted to perforate the
target.
These ‘‘delving’’ ricochets, as they might be called, are clearly operating under a different

ricochet phenomenology than the plastic hinge approach put forward in the current model. Most
likely, for these delving ricochets, the surface interaction, while not producing ricochet directly,
introduces a large yaw as the rod begins to delve below the target surface. The flow pattern
around the highly yawed projectile likely introduces a significant lateral force that continuously
pushes the rod tip away from its local trajectory. The net effect is a delving ricochet, in which the
rod takes an arcuate trajectory beneath the surface of target, before reemerging from the front
surface.
Even the ricochet data that did not manifest as delving ricochets operated a bit outside of the

phenomenology proposed in the current ricochet model. Namely, the gouges associated with the
plastic ricochets at 937 and 1088m/s striking velocity were much larger than the interaction
footprint proposed in the model. For the 501 and 651 obliquity at which these two tests were,
respectively, conducted, the interaction footprint should have been 10.6 and 16.1mm in respective
length, while in fact the experimental record records the gouge lengths as 119 and 111mm long,
respectively. Now, it cannot necessarily be supposed that the instantaneous interaction-footprint
in these experiments was an order of magnitude larger than hypothesized by the model. An
equally, perhaps more plausible possibility is that a smaller interaction footprint rode itself along
the target surface over time, as the trajectory of the rod changed under the forces and moments to
which it was subjected. Such a sliding footprint would leave a residual gouge for the post-test
examination that is larger than the instantaneous interaction footprint.
In any event, there is a disparity noted, not only between the predicted and actual critical

ricochet angles, but also in the ricochet phenomenologies proposed by the model vis-à-vis those
noted experimentally, including delving ricochet and extended ricochet gouges, not accounted for
in the model. Anecdotal experience suggests that the delving-ricochet phenomenon is far more
prevalent in aluminum, soil and other soft targets than, for example, in steel targets. Despite these
noted shortcomings, a comparison of the model to the existing Tate and Rosenberg models shows
the current model on a footing closest to the experimental reality. Fig. 17 shows that comparison
between the full model and the various other ricochet models, including the simple, Tate and
Rosenberg models. In many regards, the current model follows the trend of the Rosenberg model.
However, the current model is seen to track closer to the data than the other models, especially at
the higher velocities. As before with the B32 tests, the simple model for ricochet tracks closest of
all to the ricochet data, though just by a slight margin compared with the full model.
8. Conclusions

A rod-ricochet model has been proposed, based upon the premise that ricochet occurs by way
of a plastic hinge in the rod, located at and stationary with respect to the target interface, into
which the moving rod feeds itself. Unlike the Tate ricochet model [3], which gauges whether initial
interaction forces are sufficient to rotate the rod as a rigid body from the target interface, or the
Rosenberg model [8] which examines whether the forces from the rod–tip interaction are sufficient
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to deflect the tip from a penetrating trajectory, the current model bases its ricochet judgment on
the answer to a different question: can the interaction stresses and fluxes in the rod and target
produce the forces and moments required to continuously sustain a plastic hinge at the rod/target
interface?
While analytically based, the full model proposed here cannot be distilled down to a single

inequality, as in the case of the models of Tate or Rosenberg et al. One reason is that, in the full
model currently proposed, the prediction of ricochet feasibility is not prescribed as a mere
constraint on rod strength or target resistance. Rather, a multiplicity of requirements involving
dynamic force and moment equilibrium as well as kinematic constraints must be simultaneously
satisfied for each and every considered configuration. Despite these added complexities in the
modeling premise, the model is still represented by a handful of algebraic equations that must be
simultaneously solved.
Nonetheless, a simple version of the full ricochet model was also developed, which satisfies the

core force relations of the full model while dispensing with the moment relation and simplifying
the constraints. Like the Tate and Rosenberg models, this simple version of the current ricochet
model is expressible in terms of a single closed-form inequality relation.
Oblique-impact testing spanning the ricochet threshold was conducted for two separate ballistic

threats, including the B32 14.5mm bullet, as well as an L=D ¼ 15 tungsten rod. In general, the
data from the 24 tests showed a greater propensity to ricochet than predicted by any of the models
examined. However, the current model in its simple form proved the best predictor of ricochet, in
comparison to the full model, the Tate ricochet model and the Rosenberg model.
Possible reasons for the disparity between model and data were discussed, including aspect ratio

and nose-shaped effects of the rod, as well as the assumed size of the interaction footprint between
rod and target. Additionally, some of the experimental data witnessed a delving ricochet, in which
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the rod reemerged from front surface of the target, following an arcuate trajectory beneath the
surface of the aluminum target. Such ricochets would seem to fall outside the realm of plastic-
hinge phenomenology described in the current model. Despite these disparities however, the
overall trend of the model was in line with the experimental data, and with an apparent
improvement over the earlier models cited.
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