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Free-flight tests were conducted in the Defence Research Establishment Val-
cartier (DREV) aeroballistic range on a projectile with high drag retarder devi-
ces at subsonic velocities. All the main aerodynamic coefficients and dynamic
stability derivatives were very well determined using the six-degree-of-free-
dom single- and multiple-fit data reduction techniques. The aeroballistic range
data shows that this projectile is dynamically unstable at low angles of attack.
The second order pitch-damping coefficient, the yaw axial force term as well as
side moments were also reduced. Wind tunnel, Open Jet Facility experimental
results and full-scale aircraft free-flight trials were compared with the aero-
ballistic ones. 
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INTRODUCTION

The use of very high drag devices on certain projectile configurations offers one the
many possibilities in controlling the range of a projectile in flight [1]. The devices could
be easily deployed during flight and at certain levels to achieve the desirable range. They
also have the extra advantage of being used on low-cost practice rounds to simulate ex-
pensive bombs. 

To increase the knowledge base of projectiles with high drag devices, DREV conduc-
ted aeroballistic range, wind tunnel, open jet facility as well as full scale free-flight trials
to study the fundamental aerodynamic phenomena and the flight dynamics associated to
this type of control devices. Furthermore, the database generated during this investigation
could be used to point out the advantages and disadvantages of such a concept compared
to other ones. They also will constitute a test case to validate numerical prediction codes
and analytical tools.

MODEL CONFIGURATION

The projectile configuration that was considered is shown in Fig. 1. The projectile has
a 1.35 cal ogive nose followed by a 4.07 cal cylindrical portion and four fins are placed at
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the end of an 2.48 cal extended boattail. The fins have a 2.00 cal span and they are of a
clipped delta type. The fin leading edges are blunt with a thickness of 0.08 cal, which re-
duces to 0.05 cal at the trailing edge. The fins have no cant to produce spin rate. A high
drag 0.07 cal thick retardation disk with a diameter of 1.76 cal is located at 1.89 cal from
the nose. A 1.7 cal diameter high drag conical tail is placed just aft of the fins. The refe-
rence diameter was 50.8 mm and the center of gravity of the tested projectiles in the aero-
ballistic range was located at 3.97 caliber from the nose. The total length of the projectile
is 8.55 cal. 

The nominal physical properties of the model are given in Table I.

EXPERIMENTAL FACILITIES and TEST TECHNIQUES

DREV Aeroballistic Range

The Defense Research Establishment Valcartier (DREV) Aeroballistic Range [2] is an
insulated steel-clad concrete structure used to study the exterior ballistics of various free-
flight configurations. The range complex consists of a gun bay, control room and the in-
strumented range. Projectiles of caliber ranging from 5.56 to 155 mm, including tracer
types, may be launched. The 230-meter instrumented length of the range has a 6.1-m
square cross section with a possibility of 54 instrumented sites along the range (41 for
these tests). These sites house fully instrumented orthogonal shadowgraph stations that
yield photographs of the shadow of the projectile as it flies down the range. Extraction of
the aerodynamic coefficients and stability derivatives is the primary goal in analyzing the
trajectories measured in the DREV aeroballistic range. This is done by means of the Aero-
ballistic Range Data Analysis System (ARFDAS, [3]). The data analysis consists of linear
theory, 6 DOF single- and multiple-fit data reduction techniques with the Maximum Like-
lihood Method. 

Eleven (11) projectiles were fired in the aeroballistic range program with the 110-mm
smooth bore gun. All the projectiles had roll pins. The muzzle velocities ranged from a
low of 270 m/s (Mach 0.8) to a maximum of 323 m/s (Mach 0.95). The mid-range Mach
numbers varied from 0.68 to 0.83 that yielded Reynolds number based on the length of
projectile, between 6.6x106 and 8.0x106, respectively. The initial angles of attack ranged
from a low of 1.5° to a maximum of 4.5°. A typical Schlieren photograph showing the
complex flow field and shock structure of a projectile in flight can be seen in Fig. 2 for
shot A12 at Mach 0.94. 

DREV Indraft Wind Tunnel

The wind tunnel experiments were conducted in the DREV trisonic 60 cm x 60 cm
wind tunnel [4]. It is an indraft type drawing air into an evacuated tank with a running
time of about 6.0 s. Supersonic flow is achieved by the use of interchangeable nozzle
blocks. Transonic flow is obtained by the use of a perforated chamber with boundary
layer control through suction. Subsonic flow is obtained with one nozzle block with a
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downstream choked valve. Standard instrumentation (pitot tubes, wall pressure taps and
temperature probes) located in the plenum chamber and in the test section were used to
monitor the tunnel free stream conditions. Forces and moments are measured with six
component strain gauge balances. The aerodynamic coefficients were obtained by best fit
polynomials through the measured experimental data. 

DREV Open Jet Facility

The DREV Open Jet Facility (OJF) is a blowdown tunnel [5] having a test section
open to the atmosphere. The flow exits through a circular nozzle producing a jet of short
duration. Within the core of this jet, the flow is uniform and smooth. The facility consists
of a high-pressure reservoir and an interchangeable circular nozzle. The device tested in
mounted just downstream of the nozzle. A five-second flow at Mach 0.9 to a 60-second
flow (with a 0.9-m nozzle) at Mach 0.3 is possible.

The projectile was free-dropped in the air stream at a Mach number 0.9. The motion
was photographed and digitized only in the pitch plane. The three degrees of freedom
(Xcg, Zcg, and pitch) data is obtained at discrete time intervals. The free-steam aerodyna-
mics as well as interference effects close to the launch platform were determined with
OJFDAS [5]. Three projectiles were dropped and analyzed. They were of the same dia-
meter as the aeroballistic range ones but with different physical properties.

Full Scale Drops

The projectile was also air dropped from an aircraft over a Mach number range of 0.3
to 0.9 [6]. The trajectory was obtained from a photo-theodolite system and only the drag
coefficient was reduced.

COMPARISON OF RESULTS AND DISCUSSIONS

The static aerodynamic coefficients (CX0, CNα and CMα) from the wind tunnel, open
jet facility and full scale tests will first be compared with the data obtained from the aero-
ballistic range. Then the dynamic stability derivatives obtained from the aeroballistic
range will be presented. The symbols in the figures are; aeroballistic range single-fit (AB-
SF) and multiple fit (AB-MF), the DREV indraft wind tunnel (WT), the Open Jet facility
(OJF) and the full-scale tests (FF - M2470). The full-scale tests only provided the total
drag coefficient. The results are mostly shown as a function of Mach number. The full
analysis of the aeroballistic range results for this configuration is provided in [7] while the
results for the projectile with no high drag devices attached are given in [8]. 
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Axial force coefficient

The axial force coefficient at zero angle of attack (CX0) as a function of Mach number
is shown in Fig. 3. The aeroballistic range CX0 is of the order of 3.5 with a high scatter in
the single fit results. The wind tunnel data and the open jet facility results agree extremely
well with the aeroballistic range data from Mach 0.7 to 0.9. The full-scale results are
slightly above the aeroballistic range results by 15%. It should be noted that full-scale
results are for the total CD and since the projectile flies at a certain limit cycle, it would be
expected that the results would be higher than the CX0 results. The 2nd order axial force
coefficient term, CXα2, was well determined and CX as a function of angle of attack for
the three groups of multiple fits is shown in Fig. 4. 

Normal force coefficient slope

CNα, the normal coefficient slope, versus Mach number is displayed in Fig. 5. There is
a slight scatter in the aeroballistic range single fit results and CNα is about 15.0 over the
whole Mach number range tested. The wind tunnel and open jet facility data is within the
scatter of the aeroballistic range results.

Pitch moment coefficient slope

The variation of the pitching moment coefficient slope, CMα, with Mach number are
shown in Fig. 6. There is only a very slight scatter in the aeroballistic range single fit re-
sults for CMα and CMα is roughly -50.0 between Mach 0.65 and 0.82. The lone open jet
facility data point as well as the wind tunnel results agrees very well with the Mach num-
ber range of the aeroballistic range data.

Pitch moment damping coefficient

The tests in the aeroballistic range showed that this configuration is dynamically un-
stable at low angles of attack over the Mach number range of 0.68 to 0.83 tested. A typical
angle of attack history is shown in Fig. 7. All the motion plots [7] show that in most cases
the amplitude at 150.0 m downrange was of the order of 6.0° to 8.0° and still increasing
but leveling out in some cases. In these aeroballistic range trials, the initial angles of at-
tack were relatively low, roughly 1.5° to 4.5°.

The total pitch-damping coefficient is defined as:

CMq = CMq0 + CMq α2 ε2

where ε is the sine of the total angle of attack. The variation of the pitch damping moment
coefficient at zero angle of attack, CMq0, and the second order expansion term, CMq α2,
with Mach number are shown in Fig. 8 and Fig. 9, respectively. CMq0 is positive since the
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angular motion increases with range and the very high negative values of CMq α2 controls
the amplitude of the limit cycle. The variation in the numbers are quite high since no final
limit cycles were achieved in the short range of the tests and the angular motion keeps in-
creasing. 

CMq as a function of angle of attack for the three multiple data reductions are shown
in Fig. 10. As the angle of attack increases CMq crosses the zero barrier at roughly 3.0°. A
dynamic stability analysis [7] showed that the stability bound for CMq of roughly 39.0. If
this stability bound is superimposed on Fig. 10, it can be seen that the cross over point is
in the order of 3.0° to 4.0°. This agrees quite well with the motion plots at the mid range
value.

Roll damping moment coefficient

Since there were no fin cant on the projectiles, the roll motion was very limited. The-
refore, the roll damping moment, Clp, was kept constant –3.9 at the estimates obtained for
the projectile with no high drag devices [8]. The roll producing moment due to fin cant,
Clδδ, was allowed to vary to take into account any manufacturing tolerances in the fin an-
gles.

Other results

A pure side moment (Cnsm) was resolved in two multiple shot groups in the aeroballi-
stic range trials. There is no doubt that this side moment originates from the severe turbu-
lence caused by the collar on the fins. The projectile roll motion was almost nil in these
cases.

From the aeroballistic range and open jet facility trials, the final limit cycle amplitude
was approximated to be between 8.0° to 12.0°.

CONCLUSIONS

The aerodynamic characteristic of projectile with high drag devices at the front and
the rear were determined from free-flight tests conducted in the DREV aeroballistic
range. Eleven projectiles were successfully fired in the Mach number range of 0.6 to 0.8.
The aerodynamic coefficients and stability derivatives (CX0, CNα, CMα, and Clδδ) were
well determined. The measured angular motion showed that this projectile is dynamically
unstable at low angles of attack. The pitch damping coefficient at zero angle of attack
(CMq0) and the second order expansion term (CMq α2) were well determined. The yaw
axial force term as well as pure side moments and the trims were also reduced. A dynamic
stability analysis was also conducted.
Wind tunnel, Open Jet Facility experimental results as well as full-scale tests were com-
pared with the aeroballistic range results. The static aerodynamic coefficients from these
three experimental techniques agreed very well with the aeroballistic range data. 
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From these aeroballistic range tests and the open jet facility experiments, the final limit
cycle amplitude of the MPB-HD can be approximated to be between 8.0° to 12.0°.
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TABLE I

Nominal physical properties of model

Fig. 1 – Projectile geometry for aeroballistic range tests (all dimensions in caliber).
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Fig. 2 – Typical Schlieren photograph at Fig. 3 – Axial force coefficient vs. Mach
M = 0.9. number.

Fig. 4 – CX versus angle of attack from Fig. 5 – Normal force coefficient slope
aeroballistic range data. vs. Mach number.

Fig 6 – Pitch moment coefficient slope Fig. 7 – Typical angle of attack history.
vs. Mach number.
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