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INTRODUCTION

The Solid Fuel Ramjet (SFRJ) propulsion system combines relatively high propulsion
performance with a very low degree of mechanical complexity. As such, it is a very attrac-
tive propulsion system for gun launched projectiles. The functioning of a SFRJ projectile
is, however, dictated by complex physical phenomena with strong interactions. A suc-
cessful design of such a projectile thus requires detailed knowledge of the performance as
well at subsystem level as at projectile system level.

Between July 1995 and December 1999 a co-operative study programme on SFRJ
propulsion for projectiles was performed by the FOA Defence Research Establishment
(nowadays called FOI), Weapons and Protection Division, in Sweden and the Prins Mau-
rits Laboratory of the Netherlands Organisation for Applied Scientific Research (TNO-
PML). The co-operation programme was extended to prepare and perform an additional
flight test series in 2000. This study programme was financed by the Ammunition Branch
of the National Supply Agency of the Royal Netherlands Army and the Swedish Defence
Headquarters and Swedish Material Administration. The study programme aimed at de-
monstrating the technology of SFRJ propulsion for gun-launched projectiles by means of
designing, manufacturing and flight testing a generic SFRJ propelled projectile.

From 1995 to 2000 a co-operative study programme on Solid Fuel Ramjet pro-
pelled projectiles has been performed by FOI (formally FOA) and TNO-PML
aiming at demonstration of this technology. Technology development work on
aerodynamics, combustor and nozzle performance, projectile performance pre-
diction, mechanical design and gun system enabled the design of a fin stabi-
lized SFRJ projectile. Flight tests performed demonstrated that the projectile is
capable of generating a thrust equal to its aerodynamic drag, resulting in a con-
stant flight velocity capability. However, the flight tests also revealed problems
with ignition and structural integrity of the fuel.
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TECHNOLOGY DEVELOPMENT

To direct the technology development effort, a so-called baseline design of the SFRJ
projectile was defined early in the study programme based on requirements for typical
anticipated applications (see Figure 1). Using this baseline design as a guideline a large
number of activities have been performed during the past 5 years of the Swedish-Dutch
SFRJ projectile programme on the following areas:

Figure 1. Baseline projectile design. Figure 2. Mach number distribution in the 
air intake at 2 degrees angle of attack.

Aerodynamics

– prediction of projectile external drag components
– prediction of projectile stability characteristics
– detailed air intake performance calculations using Computational Fluid Dynamics

(CFD) tools (see Figure 2)
– aerodynamic heating analysis of the most critical projectile components

Combustor and nozzle performance

– development of several fuels from which one fuel with sufficient mechanical and
combustion performance has been selected

– mechanical tests of the fuel to verify the mechanical properties
– acceleration tests to verify structural integrity and bonding of the fuel
– nozzle performance calculations and nozzle performance sensitivity analysis 
– improvement of the TNO-PML SFRJ test facility to better simulate the in-flight com-

bustor entrance conditions
– combustor performance tests using the improved SFRJ test facility (see Fig. 3 and 5)
– CFD calculations and experiments using the SFRJ test facility which was further mo-

dified to investigate the in-flight ignition behaviour of the SFRJ combustor
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Projectile system performance

– definition and subsequent updates of the projectile baseline design
– extensive improvement and validation of the Ramjet Propelled Projectile Perform-

ance Prediction Program RP5 (see next chapter)
– baseline projectile performance prediction and projectile performance sensitivity cal-

culations using RP5 to direct the activities in all other technology areas and to enable
design trade-offs

Mechanical design

– establishing a mechanical design including pusher plate and sabot segments
– acceleration tests of the projectile components and sub-assemblies to verify structural

integrity
– finite element calculations to support the mechanical design and the acceleration tests

Figure 3. SFRJ combustor performance Figure 4. The gun system. 
testing.

Gun system

– gun firings with dummy projectiles of different masses and using several different
types and amounts of gun propellant to characterise the gun (see Figure 4) and to select
a suitable gun propellant

The technology development activities listed above have been described extensively
in [1,2].
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DESCRIPTION OF RP5

The RP5 code is developed by TNO-PML to predict the flight performance of SFRJ
projectiles taking off-design conditions into account [3, 4]. By assuming the thrust, drag
and projectile mass to be constant during a small time step of the flight, a quasi-stationary
flight calculation is performed.

At each time step the thermodynamic conditions and the chemical equilibrium com-
position of the gas flowing through the projectile are calculated at several stations through-
out the system, assuming the flow to be one-dimensional. Shock wave relations in com-
bination with the Taylor-Maccoll supersonic cone flow relations are used to predict the
total pressure recovery and captured mass flow of the axi-symmetric single cone intake.
The amount of fuel that evaporates and subsequently combusts is modelled using an em-
pirical relation derived from a large number of SFRJ experiments. The projectiles net
thrust then follows from subtracting the momentum entering the intake from the momen-
tum leaving the exhaust nozzle.

The external cowl drag is predicted using the second-order shock-expansion method.
Empirical relations are included to predict the cowl lip drag, skin friction drag, base drag
as well as the drag due to bluntness of the fin leading and trailing edges. Subsonic and/or
supersonic spillage drag at off-design flight conditions is accounted for.

Recent improvements of RP5

Throughout the co-operation programme the RP5 code has been improved substanti-
ally. A number of minor modifications concern the geometry handling capability of the
code driven by the subsequent improvements of the baseline design. The most important
improvements of the code are described below.

To predict the performance of the nozzle subsystem and its sensitivity to design chan-
ges a number of calculations has been performed using the Solid Performance Program
(SPP code) [5]. The nozzle performance module of this computer code predicts the defi-
ciencies with respect to the ideal inviscid one-dimensional nozzle flow in chemical equi-
librium. The flow divergence loss is derived from an inviscid nozzle flow field calcula-
tion using the method of characteristics. A one-dimensional finite-rate chemical kinetics
module is included to account for losses caused by the nozzle exhaust gases not being in
chemical equilibrium. Furthermore, a boundary layer module is applied to predict the los-
ses due to viscosity. Based on the results of the sensitivity analysis, several semi-empiri-
cal relations were derived which relate the above nozzle deficiencies to the parameters of
influence. These semi-empirical relations subsequently have been implemented in RP5 to
improve the accuracy of the predicted thrust of the projectile.

To take into account the adverse viscous effects on the intake performance, a multiple
linear regression analysis was performed on the intake CFD calculation results as listed
under Aerodynamics Technology Development work. This resulted in a relation descri-
bing the total pressure recovery of the intake as a function of the flight Mach number and
the static back pressure which was subsequently implemented in RP5.
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From the combustor performance experiments with the improved SFRJ test set-up
using the ultra-sonic fuel regression rate measurement technique [6] it appeared that the
combustion efficiency varied considerably during the burn time. An example of the pri-
mary data measured during an experiment is shown in Figure 5. From this data the com-
bustion efficiency as a function of burn time is calculated. To take this important effect
into account an empirical time dependent combustor performance model was derived,
describing the fuel regression rate and the combustion efficiency as a function of momen-
tary fuel grain port diameter and the momentary mass flow, total temperature and pres-
sure of the air entering the combustor. The resulting time dependent combustor perfor-
mance model has been implemented in RP5.

Figure 5. Total air temperature, fuel regression rate and combustion chamber pressure
during burn-time. 

FLIGHT TEST RESULTS

Prior to the flight test series with the final projectile design, several short range flight
tests were performed with a simplified projectile intake configuration. These test firings
have been described briefly in [1, 2] and more extensively in [7].

Three final test series were done at Bofors Test Centre in Sweden during the last quar-
ter of 1999 and during the last quarter of 2000. In these tests the final design of the projec-
tile was used with the air intake with a centre-body. The first of the final test series was
performed in October 1999 on a 600 m test range. The aims of the first test series were to
verify the mechanical design of the projectile as well as to verify the stability in flight
with the final design of the air intake. Besides some gun warmers four projectiles were
fired at zero degrees elevation. The muzzle velocity of these rounds as measured using a
doppler radar varied between 1292 m/s (M=3.87) and 1332 m/s (M=3.98). The muzzle
velocity was intentionally increased during the test series by increasing the amount of gun
propellant. All projectiles showed quick and clean separation of pusher plate and sabots
(see Figure 6) and a stable initial flight trajectory. However, none of the SFRJ projectiles
showed evidence of ignition.
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Figure 6. High-speed photo showing clean Figure 7. Impression of the test set-up of the
pusher plate and sabots separation. flight test series.

The second test series was performed during the first week of December 1999 and
aimed at achieving ignition and subsequently verify the flight performance of the SFRJ
projectile on a test range more than 10 km long. Two different methods were applied to
improve the ignition capability of the projectiles. During this test series a Weibel Doppler
radar was used to track the projectile trajectory and to measure the velocity in flight and
from that deduce the resulting force on the projectile (i.e. drag minus thrust). Figure 7
gives an impression of the test set-up. Ten projectiles (not counting gun warmers) were
fired at 8 degrees elevation during two days. One projectile was fired without fuel for
reference purposes. The muzzle velocity as measured using the Weibler Doppler radar
varied between 1290 m/s (M=3.92) and 1382 m/s (M=4.14). The muzzle velocity was in-
tentionally increased during the test series by elevating the temperature of the cartridge.
All projectiles showed clean separation of pusher plate and sabots. For one projectile a
highly unstable flight after separation of the pusher plate and sabots was observed. Four
other projectiles showed a drag level significantly higher than that of the reference projectile.
It is believed that such high drag levels can only occur when the flow of air through the
projectile is (partially) blocked. Presumably, this blockage is caused by the solid fuel
which apparently failed during gun launch.

Of the 10 projectiles fired, 4 showed a drag level lower than that of the reference
round, indicating partial ignition. For one of these projectiles a transition occurred to full
ignition, after which for a short time period a thrust was generated roughly equal to the
drag. Figure 8 shows the resulting force coefficients of the latter round as well as the refe-
rence round as a function of the flight Mach number. Due to the partially ignited combus-
tor, the initial resulting force of this SFRJ projectile is clearly lower than that of the refe-
rence projectile. But as soon as the combustor is fully ignited a thrust is generated which
practically cancels the drag resulting in the flight velocity to remain essentially constant
(see Figure 8).
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Figure 8. Comparison of measured and predicted resulting force coefficients.

The RP5 computer code, as described in the provious chapter, has been used to predict
the drag and the thrust of the projectile at the moment of full ignition. The resulting force
coefficient as predicted by RP5 is included in Figure 8. As can be seen, the performance
level of the projectile is very well predicted by the computer code.

Based on the partial success of the second flight test series, it was proposed to perform
a third free-flight test series with the aim to demonstrate a sustained propelled Mach 4
flight. Prior to the flight test series, acceleration tests demonstrated structural integrity of
fuel grain samples up to acceleration levels beyond the anticipated flight test level. At the
end of October 2000, 16 projectiles were fired using the same test set-up as during the se-
cond flight test series. Of these projectiles only 3 showed partial ignition, resulting in a re-
sulting force somewhat lower tban the reference projectile without fuel. Most of the pro-
jectiles showed a drag level significantly higher than that of the reference round, again
indicating problems with the structural integrity of the fuel.

Analysis of all data available indicates that the mechanical failure of the fuel may
have been initiated by small local deformation of the projectile body. This deformation
might be due to dynamic effects of the total projectile assembly during launch which in-
herently have not been accounted for during the acceleration tests on subsystem level.
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CONCLUSIONS 

From the work carried out within the framework of the Swedish-Dutch co-operation
programme the following may be concluded:
1. On technology areas like, aerodynamics, combustor and nozzle performance, projec-

tile performance prediction and mechanical design, the level of knowledge reached
enables detailed design of a SFRJ projectile.

2. A design of a SFRJ propelled projectile has been conceived of which the mechanical
functioning including clean separation of the pusher plate and sabot segments has
been verified in actual gun firings.

3. The free-flight tests revealed serious ignition problems. In addition, the flight test data
indicates structural integrity problems of the fuel.

4. The methods applied to improve the ignition capability have resulted in full ignition.
5. It has been demonstrated during free-flight tests that the SFRJ propulsion system is

capable of generating a thrust which cancels the drag of the projectile resulting in an
essentially constant flight velocity.
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