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NUMERICAL MODEL FOR ANALYSIS AND SPECIFICATION
OF ARAMJET PROPELLED ARTILLERY PROJECTILE

A. Stockenstrom

Dynax CC, P.O. Box 70336, The Willows, Pretoria, 0041, South Africa

Somchem of South Africais investigating the viability of significantly increa-
sing the range performance of a 155 mm artillery round by employing ramjet or
ram rocket propulsion. A numerical baseline is defined for trajectory simula-
tion of an artillery projectile featuring generic ramjet propulsion. Existing si-
mulation codes [1] were modified to suit the artillery application and to present
the input methodology in a way that allows flexibility regarding data types
(theoretical, estimates or experimental). Analysis is performed on a spin-stabi-
lized projectile featuring an axi-symmetrical inlet at the front, with the air duct
passing through an annular warhead to the rear-mounted ram engine. The low
drag figures associated with such a layout, combined with the inherently high
efficiency of theramjet, result in aballistic rangein excess of 75 km.

TRAJECTORY MODEL

The trgjectory model is principally a time domain point mass model with a forces
model subroutine to calculate the ram forces at each time step. The design of the code
strivesto simulate at the projectile system level. It employs sub-system performance data
generated by separate simulation or testing. No sub-system simulation (inlet, drag, combus-
tion) is integrated into the higher level model. To this end, the relevant sub-system
performances are defined in terms of characteristics that can readily be assimilated nume-
rically by way of tabular input or curve fitting methods. A variety of inlet and combustion
options can beinvestigated by changing only estimated performance inputs and geometrical
reference parameters. This generality isrequired because, at the start of the investigation,
it is not known what propulsion type would eventually be best suited to the application
(fuel type, gas generator, solid fuel ramjet or other).

Conversely, ideal sub-system parameters towards a specific goa (for instance long
range) can be arrived at through iterative methods, thereby setting a specification for de-
velopment work.
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Combustor model

The combustor is simplified to the level of expressing delivered thrust and resulting
back pressure as a function of the expected fuel flow rate, air flow rate and air tempera-

ture:
Pe= A1+Bimi+Cr.m’+Dy.my+E.ms+F.To (1)
Feit= A+ Bo.ms+ Co. mf2 + Do. my + Eo. ma2 +Fo.To (2)

With Pgp = total pressure at the inlet dump plane, ms = fuel mass flow rate, mgy = air
mass flow rate, Top = total temperature at the inlet dump plane, Feyjt = delivered thrust at
the nozzle exit.

For initial concept investigations, the combustion functional above is generated by
means of a separate combustion code. Once static combustion tests have been performed
[2], the output of this combustion codeis corrected. Dataa ong apossible flight envel ope,
with mg and Tgp varying with atitude and velocity, is generated to serve as the base line
data set. The constantsA to F arefound through curvefitting methods on this data set. Fig.
1 shows that Pgp is strongly dependent on ma and less so on mf. The influence of Tqy is
dight: the upper meshisfor Tgo = 700 K and the lower onerepresents Tgo = 590 K.

R, [MPa]

G e T kg

m, [ka/s] | 20 004

Figure 1: Curvefitsto model combustor performance.
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Air Inlet and drag

Theinletischaracterized by its pressure recovery versusflow ratio performance at va-
rious Mach numbers. Input data reflects the maximum pressure recovery at full flow con-
ditions, the critical point, as well as the buzz limit. These characteristics are determined
by means of wind tunnel tests, where a condition of increasing back pressure is simulated
by the closing of avalve at the end of theinlet duct.

The ram forces subroutine firstly calculates the inlet air flow, ma, from the known
flight conditions and the inlet supercritical flow ratio, which is a function of the Mach
number. For choked gas generator applications the value of ms isusually given asafunc-
tion of time. For other applications, an estimate of the requirement can serve as a starting
point. With ma, mf and To2 known, Po2 is calculated from equation 1. If Po2 is less than
thecritical pressure recovery of theinlet at that Mach number, amatched operating condi-
tion exists. Fexit is calculated from equation 2 and corrected according to the difference
between the reference pressure of the data base line and the ambient pressure in flight.
Theinlet momentum thrust, Finl, is obtained from:

Fini = (Pini - Pamp) Ain + cosat My V (3)

Equation 3is simplified by assuming Pinl = Pamp, the local static air pressure, and an-
gle of attack, a, small enough for cosa = 1. The net thrust is given by Fnet = Fexit — Finl.
V istheflight velocity.

The external drag during ram functioning comprises of wave, friction, base and inlet
additive drag components, excluding the inlet and exit momentum flux, which is accoun-
ted for in the net thrust calculation. After the ram motor has burnt out, the coast phase
drag includes this momentum difference and istherefore considerably higher.

With the thrust and drag values known, a force balance is established (as shown in
Fig. 2) and thetrajectory cal culation can be executed.

EXTERNAL DRAG
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INLET | I STREAM
STREAM—}—-— -~ - — oo e | = THRUST
THRUST= HEAT ADDITION | | &
---------- —— o~ £

2727777777777 7///'/////////’////4%:""“

i
INLET FLOW PASSAGE (PAYLOAD) COMBUSTION NOZZLE

Figure 2: Axial force balance definition.
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CASE STUDY

Sub-system performances are specified for a case study configuration. This projectile
is spin-stabilized, has an axi-symmetrical, fixed geometry inlet and a Solid Fuel Ramjet
combustion chamber. The payload is configured to allow throughflow of inlet air: either
via a central or annular duct. The nomina launch velocity is 900 m/s. Inlet diameter is
84.2 mm. Thebasics of thelayout isshowninFig. 3.

ANNULAR WARHEAD, CHARGE CAVITY Esmm

SFRJ COMBUSTION CHAMBER

INLET CONE
FUZE HOUSING

AIR FLOW PASSAGE

Figure 3: Case study flight configuration.

Sub-System Performances

Inlet performance at M = 2.65 is estimated asfollows: Thelocal flow conditions at the
end of the external compression cone can be cal culated with the Taylor-Maccoll method.
For a 25° half angle cone, the pressure recovery is 0.907. With some internal compres-
sion, the flow is decelerated isentropically to M = 1.715, which is associated with a 0.85
normal shock recovery. According to guidelines by Mahoney [3], apractical subsonic dif-
fuser canyield recoveriesin the order of 0.9 in this environment. The combined recovery
is 0.693. Improvement on this is possible through the use of an isentropic cone, more
internal compression and a more efficient diffuser. However, performance increase is li-
mited by viscous effects, start restrictions and length.

Drag measurements and estimations are covered under a separate paper [4]. Practical
experience has taught conservatism regarding drag, therefore higher drag coefficients are
used for thisanalysis. At M = 2.65, aram phase value of 0.165 is used, compared with a
coast phase value of 0.261. The very low ram phasefigureisaresult of the specific confi-
guration, where the placement of the inlet causes 30% less frontal areafor drag forcesto
act on. Typicaly, a configuration with side-mounted inlets would feature a drag coeffi-
cient of around 0.36 at thisMach number.

Combustion performance inputs were estimated from arequirement point of view. As-
suming that a pure SFRJ propellant will burn too slowly for thethrust levelsrequired, itis
taken into account that the addition of oxidizer (to increase burn rate) will result in a
lower specific energy. The resulting combustor is characterized by its ability to effect a
stagnation temperature of 374 K to theair stream at launch conditions with fuel massflow
rate=0.11 kg/s.

Trajectory calculations are performed, showing possible sea level range of 75 km.
This scenario requires 1.65 kg of ram propellant being burnt within 20 seconds, at a speci-
ficimpulse pesking at around 12 300 Ng/kg.
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Considering practical combustor grain sizes (e.g. length = 0.3 m and inner diameter =
100 mm), SFRJ propellant density less than 1000 kg/m3 and burn rates typically less than
1 mm/s, it is concluded that a redesign is warranted, opting for compositions with lower
energy content.

The trgjectory level results of this exercise is very similar to the first, the only diffe-
rence being that more propellant is required to do the same job: a propellant mass of
1.89 kg is consumed. Specific impulse varies between 9800 and 10900 Ns/kg, as shown by
Fig. 4. After someinitial deceleration, the velocity is sustained until burnout at an atitude
of 13.7 km. Fig. 5 indicates a fuel flow rate maintaining higher levels over the first
7 seconds, compared to the pure regressive nature of the air flow rate history. This (or even
more pronounced) high flow rate is required to prevent excessive deceleration initially
and is one of the major combustor design challenges for this application. The natural
SFRJtrend isfor ms to follow the mg curve.
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Plotting the combustor back pressure against Mach number for a given trajectory al-
lows a direct comparison with inlet capability, providing insight into the matching of the
components. As shown by figure 6, the base lineinlet performanceistransgressed. A new
inlet specification isderived from thisresult.

DISCUSSION OF RESULTS

The numerical model has been defined in a manner that allows compatibility and uni-
formity between simulation, specification and experimental data. The model is accurate
inasfar astheinput dataisreliable.

Analysis results show that ramjet propulsion holds high potential for long range artil-
lery applications, but that some serious challengeswill need to be addressed.

Foremost is finding a propellant composition/geometry that will yield the the high
fuel flow rates and strongly regressive nature required. Although the layout favours an
SFRJ propulsion unit, the results of the above analysis |ean towards the performance of a
typical solid fuel gas generator motor. Other aspects of concern isthe structural survivabil-
ity of the propellant and ignition. Again, the SFRJ principle is not favoured by the launch
velocity, yielding low stagnation temperature.

Very low drag figures can be achieved for configurations featuring an integrated pay-
load and inlet. There is a very fine balance between thrust and drag over the duration of
ram burning, with failureif the projectile decelerates to below ram optimal speeds. Varia-
tions of actual Cp (+10 or 20%) can be negated by adding more fuel. The extent to which
this correction can be applied is limited. For configurations with much higher drag figu-
res, theresults of thisstudy isinvalid.

Assuming that a suitable combustor and propellant composition can be developed and
that the rest of the data base is sound, extremely long ranges could be achieved with this
conceptual layout. Once that goal has been achieved, accuracy and operational practicali-
tiesare morelikely to determine what range requirement will be set. Against areatargets,
the use of arange correction fuze should improve effectiveness significantly.

The launch velocity is a critical factor. At higher velocities, the ram engine perfor-
mance is better and conditions are more favourable for acceleration or sustaining good
speeds up to burnout. The requirements of high acceleration and good volumetric effi-
ciency are contradicting, resulting in very high demands on the structural design.

The ramjet artillery concept is both challenging and promising. If the various techno-
logical challenges could be solved, this concept might turn out to be the next generation
155 mm projectile.
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