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INTRODUCTION

In range safety considerations the possible range for a projectile after ricochet must be
addressed. To avoid expensive trials theoretical models of the ricochet process can be de-
veloped from experiments, or the process can be simulated on a computer. In addition to
presenting and interpreting the results from the computer simulations, we will compare
the results to a previously published theoretical model. The theoretical model has a few
simplifications that in some cases give different results from the simulations, and we will
address these differences. 

The values needed to characterize the post-impact trajectory of the ricochet are the
velocity, the direction and the spin. Using these values, we will in principle be able to
calculate the maximum range a projectile can travel. However, this actual range is hard to
estimate because of the difficulties in calculating the effective aerodynamic coefficient
due to the spinning and tumbling of the projectile. We have therefore added the rate of
tumbling that can be of help in an aerodynamical description.

When considering firing safety, the possible range of projectiles that ricochet
off ground may be a critical parameter. This paper wil focus on the a way to de-
termine the possibilities of ricochet by numerical calculation.
A 155 mm field artillery round projectile was used as a test vehicle in all cases.
However a mechanical system of this kind in geometrically scalable. Thus the
calculations will be valid for smaller calibers also, providing that the shape of
the projectile is roughly the same.
The results are compared to another published theoretical and experimental
work. The correspondance between the calculations and the external results are
quite good provided that the projectile does not deform too much. When the de-
formation is significant, ricochet seems to become more likely.
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To simulate the ricochet process, different pre-impact values for the velocity and spin,
the angle of impact and the yield strength of the surface, were used. The values for the ve-
locity ranged from 300 m/s to 500 m/s, the spin from 400 rad/s to 1000 rad/s, the angle of
impact from 5° to 60° and the target yield strength from 30 MPa to 100 MPa. The theore-
tical model that was used, will only tell whether or not there is a ricochet, and not calcu-
late any post-impact trajectory. 

THE SIMULATIONS

The simulations were carried out using Autodyn™ 3D [1] from Century Dynamics.
The projectile and the target are made up of a grid of brick shaped zones (cells), where se-
veral differential equations can be used to calculate the conservation of mass, momentum
and energy for each of these zones. We used Autodyn’s Lagrange processor that converts
these differential equations into finite difference equations. A user defined subroutine was
added to Autodyn in order to facilitate the implementation of a spinning projectile.

In the table below, we have listed the values we used for both the projectile and the
surface except for the yield stress, which we have varied in the different simulations.

The linear equation of state was chosen, and the von Mises criterion was used to des-
cribe the yield surface. To remove distorted cells we included an erosion model (instan-
taneous geometric strain) rather than a failure model. This means that the erosion of the
material starts when the strain reaches a certain limit, and if the cells are very distorted,
they are removed from the calculations. We have also set the friction coefficient between
the projectile and the surface to zero.

To model the projectile, we have used a 155 mm shell with a right cylindrical main
body and an ogival nose section. For simplicity, the fuse was removed.

We assumed that the target surface was smooth and planar. It is of course very difficult
to create a surface that resembles a real ground. The soil surface can change from hard
rock to soft sand and even water within a small area. However, it is highly likely that the
ricochet will vary as the surface varies, so we have changed the yield strength of both the
surface and the projectile to see what kind of effect this may have on the ricochet process.

THE THEORETICAL MODEL

We have used the model developed by Wijk in [2] to compare with the results from the
computer simulations. This model assumes a blunt projectile that may either penetrate or
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slide off the surface. The maximum angle at which penetration will take place is given by

tan3 (αmax) + tan(αmax) = 8mv2/(3σπd3)

Here αmax is the critical angle between the projectile and the normal direction of the
surface, m is the mass of the projectile, v is the velocity, d is the diameter and σ is the yield
strength of the target surface. See the figure below.

We will refer to the angle 90°– α as the impact angle. 90°– αmax is thus the smallest
angle between the surface and the direction of the projectile for which penetration will
occur.

RESULTS AND DISCUSSIONS

Since the computer simulations give more information than just whether there is a ri-
cochet or not, we will look at some of these results before we compare them to Wijk’s mo-
del. First we define the vertical ricochet angle (β) as the angle between the direction of the
projectile and the surface at the outgoing branch of the trajectory.

Since the projectile is spinning the impact angle and β will generally be in two diffe-
rent planes. The angle between these planes will be referred to as the horizontal ricochet
angle (γ).

The impact angle is larger than the vertical ricochet angle for nearly all of the simula-
tions we have performed. In the simulations, there was only one exception, and in that
case the projectile was deformed.

The spin of the projectile has very little effect on the vertical ricochet angle. In the
simulations we varied the spin velocities with values between 400 rad/s and 1000 rad/s,
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and there were only minor differences in the vertical ricochet angles. However, if we look
at the results for the cases where the velocity is 500 m/s and the yield strength of the sur-
face and the projectile is 30 Mpa and 200 Mpa respectively, we get very different results
for different values of the spin. The simulations for an impact angle of 20° gives no rico-
chet when the spin is 400 rad/s, while there is a ricochet when the spin is increased to
1000 rad/s. This may indicate that the spin may have an effect on whether we get a rico-
chet or not.

There are a few differences between Wijk’s model and the simulations. The two me-
thods use different projectiles. In the simulations we have modelled a 155 mm shell,
while the model uses a blunt cylindrical projectile with a fixed diameter. But since Wijk
assumes that the entire front penetrates the surface before there is any change in the
direction of the projectile, this is assumed to have very little effect.

There is no mention of the yield strength of the projectile in Wijk’s model, but it is as-
sumed that it has no deformation. It is therefore natural to avoid deformation in the simu-
lations as well, and we have tried to simulate this by creating a projectile that has a much
higher yield strength than the target.

Finally, Wijk’s model does not include the spin of the projectile.
To compare the results from the simulations to the results of the theoretical model, we

have four different cases. In the first two cases only the velocity of the projectile varies, in
the third case we decrease the yield strength of the target and in the fourth case we increase
the yield strength of the projectile. 

Case 1

We have used the following values: 
target yield strength = 100 MPa 
projectile yield strength = 200 MPa 
spin = 800 rad/s 
velocity = 300 m/s 
projectile mass = 42 kg

The results of the simulations are given in the tables below. There was no ricochet for
impact angles larger than 55°. The last value in the table is the rotation around the center
of mass (RACM) and around an axis perpendicular to the spin.
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The result from the theoretical model with the values above is using a diameter d=
0.155 m we get αmax = 62.7°, and the impact angle = 27.3° compared to 55° in the simula-
tions. Thus in this case there is a rather large difference between the two methods. 

Case 2

In this case we have increased the velocity of the projectile to 500 m/s, while the other
values are the same as they were in Case 1. The results from the simulations are as fol-
lows:

Thus the critical angle is around 40°–45°. From Wijk's model with diameter d= 
0.155 m we and the impact angle = 19.9°. There is still a fairly large difference between
the two models. 
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Case 3

To avoid large deformations of the projectile, we have reduced the yield strength of
the surface to 30 MPa. The first table shows the results of the simulations with a spin of
400 rad/s and the second with a spin of 1000 rad/s. The velocity is 500 m/s for both simu-
lations.

The only difference between these two simulations is the spin of the projectiles. So for
the computer calculations, we see that the spin may have an effect on whether there is a
ricochet or not.

Spin is not considered in the theoretical model, so there will of course be different re-
sults in this case as well. Wijk’s model with the same values gives αmax = 77°, and the im-
pact angle becomes 13°.

Disregarding the fact that the two simulations have different ricochet angles, this is
the best match we have had so far, and it is most likely due to the large difference between
the yield strength of the projectile and that of the surface. We will try to increase this dif-
ference even further in the next case.

Case 4

If the yield strength for the projectile is 2 GPa and 100 MPa for the surface, we get the
results below. The projectile is modelled with a velocity of 500 m/s and a spin of 800
rad/s.
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In this case the deformation of the projectile is minimal and the simulation should
therefore be in agreement with the results of Wijk’s model. As in Case 2, the critical
impact angle will be 19.9°. This agrees fairly well with the simulations which have an
impact angle between 20° and 25°.

CONCLUSIONS

As long as the deformations of the projectile are small, the theoretical model gives si-
milar results as the computer simulations. But if the projectile is significantly deformed,
the results herein suggest that the critical impact angle in Wijk’s model is too small.

In this paper only the critical impact angle has been discussed. However, the Autodyn
simulations also give valuable information about other ballistic parameters like the velo-
city, direction, spin rate and tumbling rate after impact. It is left to the reader to consider
these details.

The final page shows examples of graphical output from the simulations.
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