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INTRODUCTION

Future military engagements will require weapons systems exhibiting improved range
and accuracy.  One of the technologies under investigation to achieve these goals is the
Electrothermal-Chemical (ETC) propulsion concept. In the ETC gun, energy, which is
stored either in batteries or a rotating device, is converted on demand into an electrically
generated plasma (resulting from the ablation of polyethylene material in a capillary) that
is injected into the chamber in a howitzer or gun. This plasma energy is used to ignite the
chemical propulsion charge (i.e., solid propellant) as well as to enhance gun performance
by taking advantage of a number of unique plasma characteristics. For example, a low
density plasma jet can efficiently ignite charges of high loading density, can control pro-
pellant mass generation rates [1], can reduce propellant charge temperature sensitivity,
i.e., the variation of gun performance with changing ambient temperature [2,3] and can
shorten ignition delay, i.e., the time interval between firing of the igniter and ignition of
the propellant [4]. Since a plasma has a much lower density than the gases generated by a
chemical igniter it has been suggested that energy transport by convection may be as im-
portant as radiation transport in plasma-propellant interactions [5,6]. In addition, the

The US Army Research Laboratory is investigating the Electrothermal-Che-
mical (ETC) gun concept and has undertaken a comprehensive study of the
interaction of the plasma efflux from an ETC igniter with solid propellant
grains. The goal of this work is to elucidate the physical, mechanical, and che-
mical mechanisms that underlie the favorable ballistic effects observed in ETC
guns. This paper describes the first phase of the modeling effort in support of
the project. A time-accurate computational fluid dynamics code is used that in-
cludes high-temperature thermodynamics, variable specific heats and transport
properties, and finite-rate chemical kinetics. Validation of this code utilizes ex-
periments with an ETC igniter fired into open-air, generating an unsteady flow
that impinges on an instrumented plate. Computer simulations reveal gas dyna-
mic and chemical details of the plasma jet as it mixes with air and interacts with
the plate, representing a unique model of the ETC plasma.

IB05



plasma is at a temperature that is considerably higher than conventional chemical igniters
thus, radiation effects are nearly 100 times greater than that of chemical igniters (i.e., a T4

effect). 
All of these effects can lead to significant changes in ballistic behavior and useful im-

provements in gun performance. The goal of research in this area is to elucidate the rele-
vant physical, mechanical, and chemical mechanisms that underlie the observed ballistic
effects. The first phase of the modeling effort involves a time-accurate computational
fluid dynamics (CFD) code which has been written to include high-temperature thermo-
dynamics, variable specific heats and transport properties (viscosity and thermal conduc-
tivity), and finite-rate (nonequilibrium) chemical kinetics (the mechanism is described in
Ref. 7). A separate capillary model [8] supplies boundary conditions for the CFD code in
terms of the physical and chemical properties of the plasma capillary efflux. Validation of
the capillary model and the CFD code, including coupled chemistry, is conducted by si-
mulating a series of experiments [9] wherein a plasma jet is generated from a plasma car-
tridge; pressures in the resulting unsteady flow field are measured using probes mounted
on a plate held normal to the efflux.

EXPERIMENTAL EFFORT

Litzinger et al. [9] at Penn State University (PSU) have designed and operated the
open-air experiment shown schematically in Figure 1. The polyethylene capillary is typi-
cally 26 mm in length and 3 mm in diameter (d). An extension tube 26 mm in length is
placed at the capillary exit, which guides the plasma efflux into the open-air. The capillary
and the extension tube are mounted within a solid housing (not shown in Figure 1). An in-
strumented plate is placed at some distance (L) from the plasma device, typically 19 mm.
Pressure probes are mounted on the plate with a spacing of 9.53 mm (3/8 inches).

Figure 1. Schematic of the Penn State University (PSU) experimental setup.

MULTI-SPECIES REACTING FLOW CFD CODE

The high-temperature, non-ideal, chemically reacting gas flow field within the capil-
lary efflux jet is numerically simulated using CFD. The NSRG2 code, written by the first
author [10], solves the 2D/axisymmetric, unsteady, real-gas Navier-Stokes equations in-
cluding submodels that represent finite-rate (nonequilibrium) chemical reactions, multi-
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species diffusion, as well as variable specific heats, viscosity and thermal conductivity.
The Navier-Stokes equations for 2D/axisymmetric (x,y coordinates) reacting (N species)
and unsteady (time, t) flow are written in nondimensional array form. 

(1)

The dependent variables are density (r), velocity (V and components u,v), energy (e),
and species mass fraction (ci); note that α is the flag for two-dimensional, 0, and axisym-
metric, 1, flows.

The F and G arrays contain flux terms (convective and diffusive), heat transfer terms
and stress terms (normal and shear) [10,11]. The H array contains source terms such as
normal stresses (σ+) and the chemical production terms (wi) for each specie.

The chemical production terms are computed using a chemical kinetics mechanism
developed specifically for plasma/air chemistry [7]. The mechanism consists of 57 reac-
tions and 39 species: electrons, C, C+, C++, C -, CH, CH+, CN, CN+, CO, CO+, C2, C2

+,
H, H+, H-, H2, H2

+, N, N+, NH, NH+, NO, NO+, N2, N2
+, O, O+, OH, OH+, O2, O2

+,
H2O, HO2, H2O2, HNO2, NO2, CO2 and O3. An important simplifying assumption was
made in constructing this mechanism, namely only mixtures which had a concentration of
O2 much greater than that of the plasma constituents were considered. As a result the mix-
tures were assumed to be fuel lean in the combustion sense, the C and H containing spe-
cies mentioned above being fuels.

Since no provisions have been made in the conservation equations (Eq. 1) for flows
with electric currents, the flowfield was rendered electrically neutral by setting the diffu-
sion velocity of the electrons equal to the average diffusion velocity of the ions; the diffu-
sion coefficient for the electrons is then computed from that of the ions. We realize that
the plasma gas does not necessarily behave as a perfect fluid. Indeed the ionized gas is
usually characterized as rarefied and one in which Coulomb interactions between charged
particles create significant departures from the perfect gas behavior. However, for “weak-
ly” imperfect gases one can prescribe terms that account for Coulomb interactions as
corrections to the classic pressure-density-temperature relations. Such corrections are
described in Reference 8. Alternately, it has been shown [12] that the property determina-
tions obtained from the NASA-Lewis database [13] without modification, such as the
enthalpy and specific heats, are reasonably accurate and that the correction terms need not
be employed. 

The Navier-Stokes equations (Eq. 1) are written in integral form and then re-expres-
sed in a semi-discrete fashion using a finite-volume discretization technique. The numeri-
cal computations proceed by solving the semi-discrete equation on each computational
cell using central and upwind numerical differences along with flux-limiting. Once pro-
perly discretized, the resulting set of algebraic equations are solved in a coupled manner
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in time using an explicit time-accurate method. The numerical time step is computed
using the CFL condition. A separate chemical time step is computed as well. The final
time step is based on the smallest of these. For a more complete description of the numeri-
cal scheme, the reader is referred to papers by Nusca [10,11]. 

RESULTS AND DISCUSSION

The computational domain chosen to simulate the PSU experiment is shown in Fig.
2a. This domain extends from the capillary/extender-tube on the left to the plate on the
right (19 mm) and from the centerline of the capillary (and plate) to a fixed radial distance
(40 mm) which is determined by the distance from the plate centerline to the pressure
probe designated P1 and includes a small radial distance beyond. This region was discre-
tized using 154 axial grid cells and 295 radial grid cells, distributed with essentially even
spacing throughout as shown in Fig. 2a (partial grid shown for clarity). Some degree of
radial grid clustering was used up to .015 m in order to more accurately resolve the forma-
tion of important gas dynamic phenomena (expansions, shocks and turbulent mixing).
The boundary conditions for the region are symmetry on the axis (Y=0), outflow at Y=
.04 m, no-slip/no-penetration on the capillary housing surface (X=0, .0015 < Y < .04 m)
and on the plate surface, specified inflow at the capillary exit (X=0, 0 < Y < .0015 m).
Initially, the entire flow field is filled with air (.8 mole fraction of N2 and .2 mole fraction
of O2). Fig. 3a shows the current amplitude variation for a typical experiment. Given the
amplitude/time and the physical characteristics of the capillary, the capillary model [8]
generates the range of density (Fig. 3b, solid line), velocity (Fig. 3b, dashed line),
pressure, temperature and species distributions (pressure and temperature variations have
peak values of 33 MPa and 30,000 K, respectively). The inflow conditions for the
computational domain follow from these values. 

Figure 2. a) Computational grid. b) Computed mach number contours.

The low density and high pressure plasma efflux enters the open-air as a highly under-
expanded jet (see gray-scale contours in Fig. 2b with Mach numbers between 0, white,
and 1.5+, black). Fig. 4a shows a schematic of the gas dynamic features expected in such
a flowfield. The efflux of plasma from the inlet generates a weak precursor shock (A) that
extends spherically. Behind this shock is air; the plasma is entirely contained by this
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shock and is separated from the air by an irregularly shaped contact surface (B) across
which pressure and velocity are preserved but entropy changes discontinuously. Expansion
waves, generated at the inlet (C), travel to the precursor shock (A), are reflected as weak
compression waves, and coalesce into a strong oblique shock, or barrel shock (D). This
barrel shock (D) terminates in an irregular reflection that forms a triple-point (E) joining
the barrel shock (D) it’s reflection (F), and a normal shock (G) or Mach disk. Whereas the
precursor shock (A) is relatively weak, producing a mildly supersonic flow, the barrel
shock (D) and Mach disk (G) are strong shocks that enclose a fully supersonic flow.

Figure 3. a) Current history. b) Efflux density and velocity histories.

By about 0.07 ms (Fig. 2b) the predominant gas dynamic features in the underexpan-
ded jet have been formed and the precursor shock is traversing the plate vertically. Due to
the variable viscosity in the flowfield the precursor shock is more diffuse than the Mack
disk or the barrel shock. The precursor shock reaches the plate at about 0.05 ms. Stagna-
tion of supersonic flow on the plate causes a shock reflection that moves back toward the
capillary as the precursor shock travels along the plate. This causes the Mack disk to re-
cede, settling at a position 0.01 m from the capillary (Fig. 2b). 

Fig. 4b displays the computed and measured pressure peaks (maximums) on the plate
and the corresponding time-of-arrival of the precursor shock. The computed results for a
19 mm standoff of the plate ( and solid line) compare well with the measured values (
and dashed line). In general, the computed shock velocity is too high, perhaps due to the
absence of capillary residue (i.e., particles from the vaporization of the polyethylene
liner) in the simulation. The translation of these particles would remove energy from the
flow and reduce the mean velocity. This would explain the overprediction of peak pressu-
res at the P4 tap location, where most of the particles are usually found to accumulate.
Fig. 5 shows the typical comparison for the P4 and the P1 tap locations. Predicted results
for the P4 tap location (Fig. 5a) have been shifted in time by 0.022 ms in order to line up
the arrival time for the precursor shock.
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Figure 4. a) Higly unterexpanded jet. b) Peak pressure data/computations.

With this adjustment, the timing of subsequent pressure peaks are well predicted by
the code, but the pressure levels are too low. The results for the P1 tap location are also
encouraging (no adjustments have been made) since the pressure peaks occur at regular
time intervals for both predicted and measured data; however, the predicted pressures are
too high. Fig. 6 displays some of the chemical aspects of the flowfield. Fig. 6b shows the
time histories of the major species at the plate centerline (i.e., P0 tap location). Compari-
son of this figure with Fig. 6a (distributions at the capillary exit) indicates that a large pro-
portion of the ion species are actually deposited onto the plate which are expected to ulti-
mately affect the ignition and combustion characteristics of propellant. Of course, these
results are dependent on the plasma/air chemical mechanism [7] employed in this study
and therefore warrant further study. See Reference 11 for a presentation and discussion of
the complete set of computational results.

Figure 5. Computed and measured pressure histories at taps P4 (a) and P1 (b).
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Figure 6. Computed mole fractions; a) capillary exit b) plate centerline.

CONCLUSIONS

A time-accurate CFD code has been applied to the modeling of the high temperature,
chemically reactive plasma efflux from an ETC igniter fired into open-air and impinging
on an instrumented plate. The major features of this efflux have been resolved by numeri-
cal simulation revealing a highly underexpanded jet with a strong precursor shock, a bar-
rel shock that reflects at a triple-point, and a Mach disk. Impact of the jet upon a plate ge-
nerates a stagnation region, a reflected shock that travels back toward the capillary, and a
normal shock that traverses the plate. Evidence of these phenomena is seen in both the ex-
perimental data and the prediction. The presence of these shocks has important implica-
tions for mechanical damage to solid propellant exposed to the plasma efflux. Chemical
conditions at the plate are quite different from those at the ETC igniter. The model indica-
tes that ions are present at the plate and that mixing (and reaction) between the plasma
species and the air is present in a narrow region near the efflux jet.
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