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COMPARISON OF 0D AND 1D INTERIOR BALLISTIC
MODELLING OF HIGH PERFORMANCE DIRECT FIRE GUNS

C.R. Woodley

WS4 Guns and Warheads Department, Defence Eval uation and Research Agency,
Fort Halstead, Sevenoaks, Kent TN14 7BP, United Kingdom

The Defence Evaluation and Research Agency (DERA) is conducting research
into electrothermal-chemical (ETC) tank guns. Part of this research isinvesti-
gating the potential performance (muzzle velocity) of advanced charge con-
cepts which are ignited by the application of ETC technology. Various interior
ballistics models, including zero-dimensional (0OD) and one-dimensional (1D)
codes, are available to predict the muzzle vel ocity. However, there is some con-
cern on the accuracy of OD codes when used to predict the interior ballistics of
high velocity guns. Therefore a study has been conducted comparing the pre-
dictions of OD and 1D interior ballistic codes for high velocity ETC guns. The
study investigated several advanced charge concepts that utilise high loading
density propellant geometries. This paper describes the results from the compa-
rative study that was conducted.

INTRODUCTION

Advanced charge concepts rely on high propellant progressivity (i.e. the gas genera-
tion rate increases through the use of either high burn rate propellants or propellant geo-
metries that produce an increasing burning surface area as the propellant grain burns).
High propellant progressivity means that most of the gas is generated during the late
phase of the interior ballistics cycle, i.e. when the projectile is travelling at high velocity
at some distance from the breech. A 0D code does not alow for gas dynamic effectsin the
sensethat in a 0D code events taking place at the breech immediately affect also the con-
ditions at the shot base. Thereisno allowancein a0D code for the fact that events propa-
gate at a speed that is dependent on the local speed of sound and that, as a consequence,
thereisatime delay before events occurring at the breech can affect the conditions at the
projectile. As the velocity of the projectile increases then the time delay increases. A 1D
code alowsfor these gas dynamic effects and should be more accurate than a0D code.

Interior ballistic studies for high velocity ETC guns[1] have used OD models. There-
sults from these studies have indicated that substantial increases in muzzle kinetic energy
(>40%) are theoretically possible through the use of high loading density charges, longer
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projectile travel, increased propellant impetus and moderation of the temperature coeffi-
cient. It is not known in the UK whether 0D models predict accurately the muzzle velo-
city of these gun systems. Therefore a study has been conducted comparing the predic-
tions of OD and 1D interior balistic codes for high velocity ETC guns. The OD code used
was IBHVGETC [2] which was developed by the Army Research Laboratory. The 1D
code used was CTA1 [3] which was developed by DERA.

APPROACH

Simulations were compared for three different propellant geometries. 19-perforated
cylinders, full chamber diameter multi-perforated discs and full chamber diameter laye-
red discs. Thelayered discsused 1:1 (effectively no faster burning layer) and 2:1 burn rate
coefficient ratios (the inner layer had the larger burn rate coefficient). The propellant im-
petus used for the study was 1.3 MJkg which isrepresentative of avery high energy pro-
pellant.

The results for two gun options were investigated in order to determine whether there
were any trends going from current tank gun performance levels to near-future tank gun
performance levels. Table 1 summarises the tank gun parameters. Some data have been
normalised in order to aid comparisons. The barrel length was the same for both gun op-
tions. Identical electrical ignition pulseswere used for the OD and 1D simulations.

TABLE1
Parameter Gunl Gun 2
Calibre (mm) 120 120
Chamber volume (-) 1 +13%
Maximum chamber pressure (-) 1 +20%
Shot travel (-) 1 -3%
Shot mass (kg) 8 8

Identical input data were used for both the OD and the 1D simulations. The procedure
used for each propellant geometry was to increase the propellant mass by increments of
0.5 kg and then to adjust the propellant web size in order to achieve the required maxi-
mum breech pressure. For the layered propellant (2:1 burn rate coefficient ratio), the tran-
sition to the inner layer occurred after the maximum breech pressure had been attained,
thereby producing a pressure profile with two peaks of about the same maximum pres-
sure.
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RESULTS

Muzzlevelocities
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tively. Referring to Fig. 1 and Fig. 2, for

Figure 2.
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For each propellant shape, the web sizes Figure 3.

required for the OD and the 1D smula

tionsare similar. However, thereisadight tendency for larger web sizesto be required for
the OD simulations. The curvesfor the layered disc propellant (1:1 burn rate coefficient ra-
tio) are not shown because they areidentical to those for the 2:1 burn rate coefficient ratio.
Surprisingly thereislittle difference in the required web sizes for the 19-perforated cylin-
drical propellant grains and the multi-perforated propellant discs.
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Maximum shot base pressures
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lant geometry. Further thought reveals

that the obvious cause for thisis the Lagrangian approximation for the pressure gradient.
This approximation is that the entire charge may at any time be assumed to be totally
burned and that the density of the gas is constant along the gun barrel. This assumption
leads to the well-known equations linking the breech pressure, mean pressure and shot
base pressure, i.e. (neglecting resistive forces).

I:)mean = Pbreech _CPbase/a/V ad Pbam = Pmean /CL+(/3N) (1)

where C isthe propellant mass, W isthe 400
shot mass, Prean 1S the mean pressure, || == Gered . no e e
Pbreech i the breech pressure and Penot 350 ':_'il i
is the shot base pressure. It is 0bvious ¢ soo | & toeeers N
that it is only the propellant mass and ¢ ,a'ﬁ?:‘*\.\
the shot mass that affect the pressure  § **° I'e />‘r\“.“-“"
gradients in the OD code; there is no /‘ /‘A—\\‘
direct dependence on the propellant :/
geometry. 150

The 1D results show a much greater ¢ [ S 10
dependence of the maximum shot base Figure 5.

pressures on the propellant geometry. It

isinteresting that thereislittle dependence of the maximum shot base pressure on the pro-
pellant mass for the layered disc propellant (1:1 and 2:1 burn rate ratios). An important
finding from the 1D resultsisthat, generally, use of the multiperforated propellant results
in much lower maximum shot base pressures than any of the other propellant geometries
considered.
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DISCUSSION

One important difference between 50 —
the OD and 1D codesisinthecalculation 45 |-|—a—wurrosm
of the propellant burnrates. TheOD code | T _ /'/l
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Intuitively it would be thought that 8 10 12 4 16
the 1D simulations would be more accu- "Rgure 7.
rate than the OD simulations. However,
if the interphase drag eguations that are used in the 1D code are inaccurate then the 1D
code may be predicting faster or slower movement of the unburned propellant than occurs
in gun firings. Theinterphase drag equations [4] used in CTA1 are considered to be fairly
accurate for small grains of propellant, i.e. 19-perforated cylindrical grains. There are no
data on the accuracy of the interphase drag equations for full chamber diameter discs of
propellant. The effect of interphase drag has been briefly studiedin[5].

To determine the influence of the interphase drag on the 1D results, further simula-
tionswere conducted in which interphase drag was turned off. Zero interphase drag provi-
desalimiting case. These simulations were conducted for Gun 2 only. Comparisons of the
1D resultswith and without drag are shown in Figs. 5-7.

Turning off interphase drag has the effect of reducing the muzzle vel ocities and reduc-
ing the charge mass at which an optimum muzzle velocity occurs. As expected, the web
sizes required become larger and the maximum shot base pressures become lower for
zero interphase drag. What is surprising isthe invariance of the resultsfor the layered disc
propellants (1:1 and 2:1 burn rate coefficient ratios). Thereisvery little changein the web
sizesrequired or the predicted muzzle vel ocities or maximum shot base pressures.
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Fig. 8 and Fig. 9 compare the predic-
ted spatial profiles for the propellant
bed porosity for norma drag and zero
drag respectively, for different timesin
the internal ballistic cycle (layered disc
propellant, 2:1 burn rate coefficient ra-
tio). The conditions in the barrel are si-
milar for the two simulations during the
time period shown (3.0-4.8 ms). Maxi-
mum pressure occurs at about 4.9
5.0 ms. The two figures show a greater
amount of propellant movement to-
wards the shot base for the normal drag
simulation than for the zero drag ssmu-
lation. Note that propellant movement
still occurs for the zero drag simulation
because of the pressure gradient along
thebarrel.

Fig. 10 shows the predicted spatial
profiles for the propellant bed porosity
for normal drag for 19-perforated cylin-
drical propellant (the graph for zero
dragissimilar to Fig. 9). The conditions
aresimilar to thosefor Fig. 8 and Fig. 9.
Fig. 10 shows that there is much more
propellant movement for the 19-perfo-
rated grains than there isfor the layered
disc propellant. This greater movement
isthe reason for the high 1D muzzle ve-
locities and the high shot base pressures
shown in Fig. 2 and Fig. 4 respectively.
Thereisa‘travelling charge’ effect.

Fig. 11 and Fig. 12 compare the pre-
dicted spatia profiles for the propellant
bed porosity for norma drag and zero
drag respectively for multiperforated
propellant. The conditions are similar to
thosefor Fig. 8and Fig. 9. Fig. 12 shows
similar porosity profiles to that shown
inFig. 9. Fig. 11 showsthat thereismuch
more propellant movement for the mul-
tiperforated grains than there is for the
layered disc propellant, but less propel-
lant movement than for the 19-perfora-
ted propellant grains. The comparative
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lack of movement of the layered disc ! —
propellant isthereason for thesimilarity 19 — 56
of the drag/no-drag results. =09 —58
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ascertain the validity of the interphase § %7 F— —62
drag equations for large diameter discs. 06 == o
Also, the validity of the 1D model for 05 o
modelling full chamber diameter discs 0-400 e | —7
must be addressed. Ag i; common to ' ' Distar;cefmn'q breec};(m) ' T —72
many 1D internal ballistics codes, the Figure 12.

CTA1 code is a continuum model, mo-
delling the solid propellant as afluid rather than asindividual tracked particles. An expli-
cit assumption in deriving the mathematical model used in the CTA1 code isthat the par-
ticle size is smaller than the size of a computational cell. Clearly for full diameter discs
this assumption is violated. However, simulations, using CTA1, of gun firings using full
chamber diameter discs has resulted in very good agreement between the predicted and
measured projectile velocities and chamber pressures [6]. So although the assumption is
violated of the particle size being small compared with the computational cell size, this
violation does not appear to be critical to the calculations.

CONCLUSIONS AND FURTHER WORK

Comparisons between the predictions of OD and 1D interna ballistics codes have
shown significant differencesin the muzzle vel ocities and maximum shot base pressures.
The 1D code, CTA1, predicts higher muzzle velocities than the OD code, IBHVGETC.
One consequence of these differences is that the use of the OD code, rather than a 1D
code, will result in a conclusion that higher propellant masses (and hence loading densi-
ties) arerequired to attain acertain muzzle velocity.

The results of the 1D modelling are very dependent on the interphase drag between
the gas and the solid propellant. Reducing the interphase drag resultsin lower muzzle ve-
locities and lower maximum shot base pressures. Experiments should be conducted to
ascertain the validity of the interphase drag equationsfor large diameter discs.

Results from the OD code show that the cal culated maximum shot base pressureisin-
dependent of the propellant grain geometry. This independence is due to the Lagrangian
approximation for the pressure gradient. It is considered unlikely that the propellant grain
geometry does not have some effect on the maximum shot base pressures.

An important finding from the 1D resultsisthat, generally, use of the multiperforated
propellant results in much lower maximum shot base pressures than any of the other pro-
pellant geometries considered.

Of the propellants considered, predictions for the layered propellant discs are least
sensitiveto theinterphase drag.
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