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INTRODUCTION

An exceptional practical importance of ignition and flamespreading through propel-
lant charges caused the necessity of  two-phase interior ballistic flow modelling. In the
paper basic equations of two-phase flow model of complete interior ballistic cycle with
real energetic impulse of the igniter are given. Detailed presentation of the two-phase
flow model in the igniter and two-phase flow in the gun barrel during firing can be find in
[1].

THEORETICAL MODEL

The theoretical modelling of processes in the propellant charge during ignition by the
igniter is based on modelling of nonsteady reactive two-phase flow of unburned propel-
lant grains and their gaseous combustion products. Because of great complexity of inves-

The model of two-phase flow of solid granular propellant and its products of
combustion in the gun barrel during interior ballistic cycle of ammunition
whose propellant charge is ignited by the igniter is given. The theoretical model
includes the balance equations of mass, momentum and energy for both phases,
as well as necessary constitutive laws. The igniter efflux in the propellant
chamber is obtained by incorporation in the model the two-phase flow model of
igniter function. Convergent, unconditionally stable, numerical procedure is
formed to solve the system of equations of the theoretical model. An original
procedure of numerical grid combined adaptation to the flow field increase,
caused by the projectile motion down the gun bore, is developed. The TWOPIB
code for the computation of whole interior-ballistic cycle is developed. Verifi-
cation of the model by the comparison with experimental data for the firings in
the 100 mm gun is carried out. Computational results for some important para-
meters which can’t be measured are presented. The presented model enables
more successful solutions of many interior ballistic problems.
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tigated physical phenomena certain assumptions usual in interior ballistic two-phase flow
modelling are accepted [2]. From general conservation laws we pass to  macroscopic
balance equations by formal averaging over control volumes. Combined averaging proce-
dure of Celmins and Gough is used. 

The basic equations of two-phase flow in propellant chamber and gun barrel are: 
Gas-phase mass-conservation equation

(1)

Particle-phase mass-conservation equation

(2)

where ε, Rp are gas and particles volumetric fraction, ρg, ρp – gas and propellant density,
– velocity of gas and solid, – rate of interphase mass transfer, – mass

flow rate of gases through igniter side holes and WCV is control volume. Single overbar
denotes time average; double overbar denotes time average normalised by ε. 

Gas-phase momentum-conservation equation

(3)

Particle-phase momentum-conservation equation

(4)

where p is pressure, Pp is intergranular stress and is interphase friction force. Interphase
surface average is denoted by 〈 〉 i.

Gas-phase energy-conservation equation

(5)

Gas-phase energy-conservation equation

(6)

where are gas and particle total enthalpy, is total enthalpy of gases coming
from the igniter side holes, hc,p is heat of combustion of propellant and q is interphase
heat transfer.
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Additional determinations for some terms in previous equations are done by constitu-
tive laws.

Equation of state for the gas phase is the Abel-Nobel relation. The statement of a con-
stant density for the propellant grains represents the equation of state for the solid phase.

Supposing direct correlation with the pressure drop in the granular bed interphase
friction force for particles of any shape is . Interphase friction
coefficient f is obtained from Ergun, Kuo-Nydegger or Wilcox-Krier law for non-fluid-
ised bed, and from Anderssen law for fluidised bed [3]. 

Isotropic intergranular stress depending only on particles volumetric fraction is
adopted. Gough-Zwarts, SNPE and Kuo-Summerfield intergranular stress laws are incor-
porated in the model [4].

The criterion for propellant ignition assumes ignition to have occurred when the sur-
face temperature of a particle  reaches a critical value:

(7)

The empirical pressure dependent relation is used for the propellant
burning law (a, b and n are constants). The production rate of gases in the control volume
is .

Propellant surface temperature Tps is defined from the energy conservation equation
for the interphase control volume:

(8)

where Aps, Cp and Tp are surface, specific heat and bulk temperature of propellant. Inter-
phase heat-transfer coefficient hg is obtained from convective heat transfer relations for
granular beds: Gelperin-Einstein relation for non-fluidised beds and Butler-Lembeck-
Krier relation for fluidised granular propellant beds. Particle-side heat-transfer coefficient
hp is obtained from thermal wave penetration depth considerations.

The “shadow” method of Spalding is used for the particle size calculation. The parti-
cle volume is: Wp = Wpo (Rp / Rp*) {Rp* – “shadow” particle volume fraction; Wpo – in-
itial particle volume). The particle surface is given by the propellant form function.

Mass flow rate of black powder gaseous combustion products through igniter side
holes is defined from the complete two-phase flow model of igniter real function in the
propellant charge [1]. The igniter efflux is governed by the ratio of pressure in the propellant
charge and corresponding pressure in the igniter pig (Table 1).
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Table 1

Discharge coefficient CD and hole Mach number Mfi are determined in accordance
with Sneck considerations of the flow in the gun-tube side holes.

The equation of projectile movement is:

(9)

where mpr, Vpr are projectile mass and velocity, pfr is projectile frictional pressure St is
gun-tube cross-sectional area. The projectile movement begins when a. sum of pressure
and intergranular stress at the projectile base becomes greater than the projectile start
pressure Po. The projectile displacement is: dXpr = Vpr dt.

The finite-difference equations are derived by integrating of partial differential equa-
tions over the finite control volumes. For equations discretisation a conventional equidis-
tant staggered grid is used with velocity nodes at the boundaries. An original strategy of
combined numerical grid adaptation to the flow field increase, caused by the projectile
motion, is developed. For the nth integration step the strategy can be represented as:

– Stretch the grid with unchanged number of nodes and keep the
grid equidistant.

– Add one grid node, keep the grid equidistant and set i=1.

where (X0 is initial distance of adjacent grid nodes and (Xi is projectile displacement dur-
ing ith integration step.

Because of the high degree of non-linearity and interlinkage of the equations, an itera-
tive reliably convergent solution procedure is developed. The upwind differencing for the
convection terms and a fully implicit algorithm are used. The TWOPIB code is developed
for computation of propellant charge ignition by the igniter. The code performs a simulta-
neous interactive calculation of two-phase flow in the igniter and two-phase flow in pro-
pellant chamber and gun tube during interior ballistic cycle. 
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COMPUTATIONAL RESULTS AND MODEL VERIFICATION

Sophisticated experimental investigations of the igniter function at the ambient air
and propellant charge ignition by the igniter in the fiberglass tube were carried out.  These
experimental results and model verification are presented in details in [1]. 

Firings of 100 mm APFSDS ammunition with 19-perforated NCD propellant in the
experimental 100 mm gun served as the basis for the TWOPIB code verification for the
complete IB cycle. 

A comparison of experimental and computational results for projectile muzzle velo-
city and maximum breech pressure is given in Table 2.

Table 2

An excellent agreement between experimental and computational results is obtained.
By that way a principal requirement for the interior ballistic code to represent adequately
the main interior ballistic parameters is fulfilled.

An example of pressure profiles from pressure measurements by piezo-gauges along
100 mm gun barrel compared with computational results is presented in Figure 1 (X is a
distance from the breech and MPi is ith measuring point).

Figure 1.
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Propellant charge V0     (m/s) pm     (bar)
experiment computation experiment computation

6.2 kg    P42 1462.7 1460.1 3755 3761
6.4 kg   P42 1495.7 1498.8 3810 3925
6.6 kg   P42 1524.4 1524.9 4182 4114
7.6 kg  P43 1500.7 1503.9 3885 3931
7.8 kg   P43 1542.0 1544.9 3980 4066
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Results show a good agreement between computation and experiment for the pressure
distribution in the propellant chamber and gun tube, especially for the initial phase of in-
terior ballistic cycle comprising ignition of propellant charge and start of projectile.

The code enables calculation of some relevant parameters that can’t be measured.
Computed distribution of propellant volume fraction is given in Figure 2. 

Figure 2.

The non-uniformity of Rp distribution is evident during whole IB cycle.
Computational results of propellant gases and propellant grains velocity distribution

are presented in Figures 3 and 4.

Figure 3.
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Figure 4.

In the initial phase of projectile movement (till t=3.5 ms in Figure 4) the propellant ve-
locity at the projectile base is equal to the projectile velocity. There is a lag of propellant
grains behind accelerating projectile in later phases of IB cycle. This physically realistic
picture is obtained by the appropriate boundary condition for the particles velocity at the
projectile base [1].

CONCLUSIONS

Based on previous considerations following conclusions can be drawn:
– Theoretical model of two-phase flow in the gun-tube during interior ballistic cycle of

the am Twenty-two points, plus triple-word-score, plus fifty points for using all my
letters.  Game’s over.  I’m outta here.munition with propellant charge ignited by the
igniter is developed. 

– An iterative reliably convergent solution procedure is included in TWOPIB code for
simultaneous interactive calculation of two-phase flow in the igniter and two-phase
flow in propellant chamber and gun-tube.

– The code adequately represents main interior ballistic parameters and enables calcula-
tion of relevant two-phase flow parameters in the gun barrel.

– The presented model enables, not only the choice of optimum igniter and complete
optimisation of propellant charges, but sophisticated solutions of many other interior
ballistic problems.
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