 Tableof Conterts IB09

19th International Symposium of Ballistics, 7-11 May 2001, Interlaken, Switzerland

FACTORS AFFECTING THE ACCURACY OF INTERNAL
BALLISTICS, INCLUDING THE SIMULATION
OF PROPELLANT MOTION

M. Pocock, J. O’Neill and C. Guyott

Frazer-Nash Consultancy Ltd, Dorking Business Park, Dorking, Surrey, RH4 1HJ, UK
www.fnc.co.uk

Internal ballistics modelling software can provide high quality results and in-
sight into the physical systems being modelled. Aswith any complex numerical
model however, the fidelity of the results can be sensitive to detailed modelling
assumptions.

In this paper experimental results are compared against two sets of predictions
obtained with the FNGUN internal ballistics software [1]. The first models are
high quality, but based on common modelling assumptions of ‘ideal’ behaviour.
The second set of models takes account of realistic effects such as non-ideal
grain shape and propellant movement.

It isshown that there are significant improvementsin accuracy of pressure-time
traces when the additional features are modelled.

INTRODUCTION

Modelling softwareiswidely used for simulating internal ballistics and predicting ex-
perimental results, as demonstrated by the number of papers on thissubject in[2] and [3].
Recently there have been major advancesin the tools available and the techniques used to
optimise the models and provide ever more realistic models[4] and [5]. However aswith
any complex numerical model, the fidelity of the results can be sensitive to detailed mo-
delling assumptions. Furthermore, whilst most codes should produce an adequate result
initially, it can take considerable experience to get a good result first time. This paper
shows how initial predictions can be improved by refinements to give excellent agree-
ment with experimental data.

To improve the accuracy of the ballistics model it is necessary to include in the model
actual features of the breech, barrel, shot and, especialy, the charge. This paper describes
the effects of propellant grain size variation and propellant movement, as well as the ef-
fect of refined meshing on the accuracy of the model. Some of these may be uniqueto the
system being modelled, others may be more general properties; either way it isimportant
to have good information about the gun system being modelled.
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Direct comparisons between an experimental gun system and simulations are pre-
sented to demonstrate these effects and to show the potential for improvement in the mo-
delling accuracy. The experimental system is described below; the modelling software
used is FNGUN [1]. The FNGUN software employs a one-dimensional, two-phase flow,
finite difference solver, coupled to a numerical representation of a grain’s geometry
throughout burning. These features permit the physical effects listed above to be model-
led without the overhead associated with full 3D codes.

EXPERIMENTAL SYSTEM

The experimental results presented here were obtained by DERA UK from a120 mm
gun system. The gun has been modified for experimental use, and contains several pres-
sure tappings along the breech and barrel so that direct comparisons of experimental and
modelled pressure can be made.

The charges and projectiles used were developed especialy for the purposes of com-
parison with numerical modelling. The projectile base wasflat, and simple charge designs
using dotted stick propellants were employed so that the pressure variations recorded
during the firing could be more accurately attributed to effects of the propellant layout. It
should be noted that the principles described in this paper apply to more complex sys-
tems, the simple systems presented merely allow easier presentation of the modelling ef-
fects. Three charges are considered, each one having a different initial configuration of

the same dlotted stick propellant, asshownin Figure 1.

Charge 1 9.0 kg slotted tube propellant, adjacent to igniter

mp

Charge 2 4.5 kg dlotted tube propel lant, adjacent to igniter
4.5 kg dlotted tube propellant, adjacent to shot

mp

Charge 3 9.0 kg slotted tube propellant, adjacent to shot
(Note new position of igniter)

Figure 1: Propellant layout for the 3 charges considered
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The results presented in this paper include direct comparisons of experimental and
predicted pressure (at a quarter of the distance along the chamber) as well as comparison
of the pressure difference between two points (at one quarter and three quarters of the dis-
tance along the chamber).

INITIAL MODELS

Theinitial model for each charge accurately modelsthe following aspects:
— Chamber volume and shape
— Igniter Charge—chemical properties; grain shape; location within chamber
— Main Charge—chemical properties; grain shape; |ocation within chamber
— Combustible Case—chemical properties; location within chamber
— Shot mass, location and approximate engraving forces
— Aninitial mesh of 30 equally spaced cellsthrough the chamber

The results of these models are shown with the experimental measurements in
Figure 2. Pressure difference curves, as shown in Figure 3 offer an extremely effective
method of comparing data from the model and the experimental gun. Whilst two pressure
curves may appear similar, the pressure difference datawill show dlight differencesin any
pressure waves — if there is good correlation between the predicted and experimental
pressure differences then the model islikely to be agood representation of the experimental
Sset-up.

MODELLING TECHNIQUES

Propellant grain tolerance, propellant movement and mesh refinement are important
modelling features that can aid the accuracy of the gun models. The actual changes that
were made to the models and the physical phenomenon that they represent and their ef-
fects are discussed in the following sections. The effects of these changes on the predic-
tionsare presented in the conclusion.

PROPELLANT GRAIN TOLERANCES

Dueto manufacturing methods there are usually slight variationsin propellant geome-
try, for instance:
— spherical grainsmay not betruly spherical
— tubular grains may not have cylindrical holes or a cylindrical outer surface, the hole
may be offset, dots may be tapered and offset
— cross propellants may have tapered fins of different thicknesses
— non uniform composition can lead to different burn ratesthrough the grain [6]
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Figure 2: Pressure time curvesfor charges 1, 2 and 3 (left to right). Experimental pressure
isshown inwide-grey, initial model in fine-black.
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Figure 3: Pressure difference curves for charges 1, 2 and 3 (left to right). Experimental
pressure differenceis shown in wide-grey, initial model in fine-black.

These variations will cause some of the grains to be completely burned before others
and in extreme cases it can even cause ‘dlivering’ of grains that with, perfect geometry,
would not dliver. For the slotted tube grains considered here (as well as strip and cross
grains), an ‘ideal’ model would result in a abrupt cessation in burning when al the grains
simulatenously burn-out. Modelling the variation will result in a gradual reduction in
burning (and gas generation).

There are several methods that can be used to model grain to grain variation. The first
method isto explicitly model the inaccuracies of the propellant. Employing this approach
the user defines acustom geometry for the propellant grain, rather than being restricted to
ideal grain geometries. Complex surface area algorithms are used to calculate how the
surface area varies with regression distance. These have been shown to provide greater
modelling fidelity than simple shape functions. This technique is explained in the follo-
wing section with an example using the “ user defined grain” function of FNGUN.
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Modelling of an imperfect Grain Geometry

This section considers along tubular grain with an eccentric hole. These are typical of
the imperfections found in practice, and illustrate the difference in regression distance
and the surface area characteristics that are obtained with slight geometrical errors. Such
agrainisshown ontheleftin Figure4.

During theinitial phase of burning, thisgrain will perform likean ideal grain, with the
surface area gradually reducing. Eventually, the inner and outer surfaces will coincide at
one point, asis shown in the center of Figure 4. Subsequently, the cross-sectional area of
the grain will take on a crescent shape, asis shown in the right of Figure 4. The surface
areawill then decreaseto zero in anon-linear fashion.

©C ¢

Figure 4: Grain shape for an eccentric tube. Before ignition; at burn-through; after burn-
through

Figure 5 shows how modelling the eccentricity causes the surface to reduce gradually
rather than abruptly cease. As the generation of gas is dependent on the surface area, this
also meansthat the effective burn rate reduces.
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Figure 5: Surface area for an eccentric  Figure 6: Shot travel (fine-black) and pro-
(wide-grey) and ideal grain (fine-black) pellant movement (wide-grey) for Charge 3
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Using several bundles of propellants

A dlightly cruder, but still very effective, method of modelling the variations in pro-
pellant geometry isto split the propellant model into several bundles, each with aslightly
different geometry. A typical set-up would be:

50% at specified web dimensions

25% at specified web dimensions plus 10%

25% at specified web dimensions minus 10%

These bundles, although technically separate propellants, are modelled as filling the
same part of the chamber simultaneously and effectively create one charge with varying
geometry.

Since each propellant isadifferent size, the length of the burn differs. Thisresultsina
stepping down of the effective surface area and hence the overall gas generation rate as
each bundle burnsthrough.

PROPELLANT MOVEMENT

During the firing of a gun it is likely that the propellant bundles move about in the
breech and barrel, aslong as there is space for them to move in and a pressure gradient to
drive the process. Allowing at |east some of the propellant to move within the breech and
barrel has significant effects on the accuracy of the model. Aswell asimproving the accu-
racy of the model, introducing propellant movement can give a better insight into the me-
chanism of firing.

In each of the final models propellant was permitted to move within the breech and
along the barrel behind the shot. Figure 6 shows that in the final model for charge 3 the
propellant initially moves backwards (that is, away from the shot base) before it beginsto
follow the shot along the barrel, and then finally burning out. It is found that incorporat-
ing propellant movement into a ballistics model can “smooth” high peak pressures. In
addition modelling of burning propellant along the barrel can be useful in erosion studies.

MESHING EFFECTS

Aswith any numerical method, afiner mesh generally increases the fidelity of results
and increases computational time. By locally refining the mesh around featuresthat areli-
kely to affect the gas flow, (such asigniters, endcaps and at the ends of propellant bund-
les) the benefits of arefined mesh can be obtained with little computational time penalty.
An example of asimple locally refined mesh is shown below in Figure 7, this contains fe-
wer cellsthan theinitial model but hasahigher cell density whererequired.
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Figure 7: Locally refined mesh

FINAL MODELS

All of the techniques discussed above have been incorporated into models of the 3
charges. Figure 8 and Figure 9 show a comparison of these final models with the experi-
mental measurements in the same format as used for the initial models in Figure 2 and
Figure3.

CONCLUSIONS

Although the charge systems discussed here appear reasonably simplethey exhibit the
complex 2-phasetransient fluid dynamics problems of any gun system. Theinitial models
are detailed, and represent an accurate reflection of the ‘ideal’ system. These models are
shown to produce adequate fidelity for many uses. It should be noted that even these in-
itial models are more realistic than lumped parameter models, which would predict iden-
tical resultsfor each of the 3 charges.

When refinements are made to the model s to simulate amore realistic gun system, the
predictions become much closer to the experimental measurements. Of the different fea-
tures simulated, propellant movement had the greatest effect on the gun system models
considered in this paper.
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Figure 8: Pressure time curves for charges 1, 2 and 3 (left to right). Experimental shown
inwide-grey, final model in fine-black
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Figure 9: Pressure difference curves for charges 1, 2 and 3 (left to right). Experimental
shown in wide-grey, final model in fine-black
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