 Tableof Conterts IB10

19th International Symposium of Ballistics, 7-11 May 2001, Interlaken, Switzerland

A TWO-DIMENSIONAL INTERNAL BALLISTICS MODEL FOR
MODULAR SOLID PROPELLANT CHARGES

Dr. P. S. du Toit

ARMSCOR, Private Bag X337, 0001, Pretoria, South Africa

Many modern artillery charges are modular with granular propellant encased in
combustible cases. These cases influence the ignition process because they
constrain the flow of ignitor and combustion gases. In this paper the further de-
velopment of atwo-dimensional Internal Ballistics model to handle combusti-
ble casesis presented. Gas pressure and elastic stresses cause movement of the
cases. Ignition and combustion of the cases are modelled. They are considered
to beimpermeable until arupture criterion isreached. Post-rupture behaviour is
described by an interim model because of inherent uncertainties. The numerical
model isstill under devel opment and must al so be validated.

INTRODUCTION

Numerical models for the simulation of the IB (Internal Ballistics) of guns cover a
wide spectrum in terms of level of sophistication. The simplest model is called the lum-
ped parameter or thermodynamic model. This zero-dimensional model iswidely used for
the prediction of global parameterslike peak pressure and exit velocity.

The next level in terms of increasing sophistication is the 1D (one-dimensional) mo-
del ([1], [2] & [3]). These models numerically solve variables like pressure and velocity
asafunction of the axial coordinate and time. They can be used for the prediction of glo-
bal parameters or, alternatively, as diagnostic “tools’, where the aim is to understand the
processes taking place within the combustion chamber (for exampleignition stimuli lead-
ing to the occurrence of axial pressure waves).

A two-dimensional (2D) model is heeded to study flame front propagation in the axial
and radial directions. A 2D (or 3D) model is aso needed when parallel axial flows with
different velocities occur. Secondary gas flows can take place inside a center-tube or
through an annular space on the outside of the charge. The number of dimensionsis not
the only factor that determines the applicability of amodel. Modern artillery charges are
often modular with the propellant in each module encased in a combustible cartridge
case. Such a charge configuration can have a large influence on the ignition process, be-
cause the flow of gasis constrained by the walls of the modules. Gas flow can take place
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along the center-tube, in the volume between two modules, and also between the outside
of a module and the inside of the combustion chamber. If a combustible case ruptures,
then additional gas flow pathswill be created. It is clear that a 2D IB program also needs
the capability to model combustible casesto enableit to be used asadiagnostic tool appli-
cableto most modern artillery charges.

The author developed abasic 2D 1B model ([4]). A new 2D IB program was created
by adding a reactive second phase to the commercial CFD (Computational Fluid Dyna-
mics) code FLO++ ([5]). Other examples of 2D codes are NOVA and NGEN ([6], [7]). In
this paper the IB version of FLO++ will be discussed briefly, followed by the extensions
needed to model combustible cases.

OVERVIEW OF FLO++ 2D IB PROGRAM

FLO++ uses the so-called Control Volume method for spatial differencing ([8]), to-
gether with fully implicit time differencing. A 3D stationary or moving Eulerian grid or mesh
is standard, but for IB a 2D axi-symmetric formulation is used. The ideal gas equation-of-
state in FLO++ was replaced with the Abel-Nobel equation-of-state (which adds a co-vo-
lume term) to accurately predict the pressures attained in guns. For IB options specifying
the unsteady flow of acompressible gas must be selected.

The propellant gas and the solid propellant are treated as two distinct phases. The lat-
ter isdepicted in an Eulerian manner, which meansthat acommon grid isused. The distri-
bution of the solid is defined by means of asolid volume fraction in every cell (= 1—-gas
porosity). The solid fraction in aparticular cell will change as afunction of time because
of combustion and the movement of the grid and the propellant. The basic premisefor the
integration of the solid phase is that its conservation equations are solved explicitly be-
fore the start of the calculational cyclefor the gas phase. Thisis possible because the pro-
pellant is considered to beincompressible.

The conservation equations for the gas phase need some modifications to account for
the volume occupied by the solid phase. New terms appear that reflect inter-phase effects
like heat transfer, drag and combustion. Thesetermsare cal culated by means of empirical
correlations. The gas pressure gradient now accel erates both phases, and thisis reflected
in their momentum and energy equations. An intergranular stresswill exist inthe solid if a
critical solid fraction is exceeded. The convection part of the continuity equation of the
solid must be handled with care. A discretization scheme based on upwind differencing
will lead to excessive numerical diffusion (smearing) at the edge of the region occupied
by the propellant. For IB some smearing is advantageous, because a sharp propellant
boundary can cause numerical problems, but the smearing should be limited and not in-
crease with time. A successful algorithm was developed ([4]). Theignition chain itself is
not modelled at present. Instead igniter gas can be rel eased as a prescribed function of po-
sition and time.
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A BASIC NUMERICAL MODEL FOR HANDLING
COMBUSTIBLE CASES

In a paper presented at the 18th International Symposium on Ballistics ([6]) the IB
program NGEN, which is under development at the US Army Research Laboratory, was
used to simulate granular and modular charges. NGEN initially views the combustible ca-
ses asrigid and impermeable. The 2D version of NGEN was used, which combined with
therigid prescription, only allowsthe axial movement of a propellant module. If asignifi-
cant pressure differential is reached, then the case becomes permeable. A section of the
case is alowed to break or burst when afixed time interval has elapsed since it became
permeable.

The present approach, somewhat different to that of NGEN, is based on flexible mo-
dule walls that can move under the influence of gas pressures as well as elastic stresses.
The case isinitially impermeable and breaks or ruptures when it reaches a rupture crite-
rion. Following rupture, gas and propellant can flow through the opening.

The first stage of the development of a numerical method was to incorporate a basic
model for combustible cases in FLO++. For the basic model ignition, combustion, mate-
rial strength and ruptureisignored, and the material remainsimpermeable. The combusti-
ble case materia is considered to be incompressible, but the volume occupied by it is
taken into account.

It seems logical to represent the physical position of combustible cases by means of
line segments, because only a 2D representation is needed. Such line segments are joined
at vertices, which can be moved to represent the movement of the combustible case. Line
segments independent of the gas grid will lead to cells containing gas from both theinside
and outside of acombustible case. There will then be no pressure differential to accelerate
the case (acell can only have asingle pressure). It would also beimpossibleto enforce the
condition that the combustible caseisimpermeable.

The solution is to define an initial grid in which the line segments coincide with cell
interfaces. Theinside and outside of a part of acombustible case are then adjacent to dif-
ferent cells, which can have different pressures. The impermeability condition can be en-
forced by not allowing gas flow through a face coincident with a line segment. FLO++
can handle the moving grid caused by the movement of line segments, but the remainder
of the grid must be moved in a sympathetic fashion to avoid large cells or cellswith nega-
tive volumes. Even then problemswith adistorted grid can occur.

In the figure below the grid above the centerline is shown for a combustion chamber
with two combustible cases or modules. The module walls, represented by line segments
that coincide with selected faces, are shown with thick lines. The vertices connecting
these segments are identified with diamonds. An unstructured grid is used in the conical
section to facilitate the transition from 8to 4 cells.
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For faces coinciding with line segments, different pressures are allowed on either side
instead of the normal continuous description. The momentum transferred from the gasto
aline segment, in adirection perpendicular to theface area, is proportional to the pressure
differential and the face area. Axial and radial velocity increments of the vertices that de-
fine the line segments can be deduced from the momentum increments of the adjoining
segments. Face pressures are interpol ated between adjacent cell centers using the assump-
tion that the accel eration of the gasin the two adjacent subcells and the line segment isthe
samein the direction between cell centers. The cal culation of new velocities and positions
of vertices defining line segments is done explicitly before the start of the calculational
cyclefor the gas phase.

Boundary conditions must be implemented for vertices defining the line segments.
The combustible case, as represented by these vertices, may not cross the centre-line,
breech, combustion chamber/barrel inner radius or the base of the projectile. Contact be-
tween adjacent modules must also be accommodated. These vertices are stopped just
short of a boundary they may not cross, which resultsin very thin cells. Such cells fortu-
nately do not pose aproblem for an implicit method.

For thefirst example the geometry shown above was chosen. To obtain ignition of the
propellant while still retaining an inert, impermeable material description for the combus-
tible cases, the inner walls of the two modules were removed. Igniter gas was released
along the centre-line of the left module. The gas grid, combustible cases and vel ocity vec-
tors are shown below. At the stage of the calculation shown in thisfigure, the propellant in
the left module has been ignited. The pressure of the igniter and combustion gas causes
the walls to expand. Contact has been made with the breech, the inner radius of the com-
bustion chamber and the second module. It seems as if al these boundary conditions
function satisfactory.
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The sameinitial configuration was used for the next example, but igniter gaswasrele-
ased inside both modules. Only vertices defining line segments were moved. The grid
and velocity vectors are depicted in the figure below. The calculation could not be conti-
nued beyond the stage shown, due to zero/negative cell volumes occurring next to the se-
cond module. An agorithm for the sympathetic movement of vertices not defining line
segmentsisobviously needed.
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A basic algorithm for moving these verticesis to reposition them at the average posi-
tion of their direct neighbours. Several iteration cycles are needed. Vertices on the outer
boundaries must obviously remain on these boundaries. The result for this simple scheme,
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after the same elapsed time, is shown below. The gas grid in the conical section moved in
response to the movement of the front wall of the second module. Cellswith avery small
or negative volumein the previous figure are now of anormal size.
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In response to grid problems encountered as different cal cul ations were run for longer
times, the grid movement algorithm was continually refined. The end result is an algo-
rithm were the position of avertex (not defining aline segment) is calculated as aweigh-
ted average of the positions of its direct and indirect neighbours. The weights are modi-
fied when problemslike small interior angles or short cell sides occur.
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The previous problem was repeated for a much longer period of time and the impro-
ved mesh movement algorithm was used. The result appears above. The movement of
front wall of the second modul e appearsto be unstable, with one very large face and seve-
ral small faces. Thisinstability can be attributed to the lack of material strength aswell as
arupture mechanism in the present model. The algorithm for sympathetic movement ap-
pearsto function satisfactory.

MATERIAL STRENGTH, RUPTURE, IGNITION AND
COMBUSTION

Material strength was added to the basic model. This reflects the resistance the com-
bustible case offers to compression, elongation and bending. An elastic material model is
assumed. The stresses aswell asthe resulting velocity increments of verticesdefining line
segments are cal culated explicitly before the start of the calculational cyclefor the gas.

The previous cal culation was repeated, but with material strength taken into account.
The elapsed time was the same. The result appears below. The forward movement of the
front wall of the second moduleis considerably less than before because the effect of the
gas pressure inside the module is now partially counteracted by the elastic stresses. There
isno sign of the previousinstability.
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A rupture criterion was the next extension to the model. Due to a lack of data it was
decided to use avery simple rupture criterion based on the fractional area enlargement of
aface defining aline segment. The modelling of post-rupture behaviour isinherently dif-
ficult and uncertain. The rupture phenomena is three-dimensional but the model is only
two-dimensional and with line segments of a finite size. By the time rupture takes place
the combustible cases have probably already played their role during the ignition process
of the propellant. The exact details of what subsequently happens to the combustible ca-
ses should not have atoo large influence on the rest of the IB simulation. An interim post-
rupture model used in this study is described bel ow.
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After rupture a non-zero mass flux for gas and propellant across a face will be allo-
wed. The pressure interpolation scheme for such a face is changed so that the gas expe-
riences a greater acceleration than the solid. The resulting flow of gasis still smaller than
it would have been with no solid present. Thisisto reflect the fact that the fragments of
the combustible case will till impede the flow of gas (and propellant) to a certain degree,
depending on their orientation with respect to that flow. When a baffle face ruptures, the
local materia strength is reduced to a small fraction of its previous value. The reasoning
isthat, depending on the direction in which the material cracks or shears, some strength to
resist elongation and bending will remain. It was further found to be advantageous for nu-
merical reasonsto spread the reduction in material strength over ashort period of time.

There are therefore several adjustable parameters in the tentative model for rupture
and post-rupture behaviour. Presently, in the absence of experimental data, these factors
are adjusted to yield results that appear realistic. The previous calculation was repeated,
but with the rupture and post-rupture models active. The result appears below. Ruptured
line segments are shown with thin instead of thick lines and the vertices with plus signs
instead of diamonds. The front wall of the second module has completely ruptured, as
well as some other line segments.
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The numerical model was further extended by introducing ignition and combustion of
the combustible cases. Thisisdonein away very similar to that of the propellant and will
not be detailled.

When most of the main charge is burning and most of the combustible case line seg-
ments have ruptured, then the combustible cases acts mainly as a secondary propellant
and has avery small effect on the gasflow. The fact that the positions of the combustible
casesinfluence the grid can prevent some cal cul ations from reaching projectile exit. A so-
lution isto selectively convert combustible case line segments to propellant (with proper-
ties differing from the main charge), which is deposited in the adjoining cells. A specific
line segment will be converted if it has ruptured and thereisonly asmall gas pressure dif-
ference across it. These conversions will progressively free the gas grid and facilitate the
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calculation. Calculations were done where all the combustible case material was conver-
ted and the cal culation could proceed until the projectile left the barrel.

CONCLUSION

This paper presents the further development of an existing 2D 1B model to handle the
simulation of combustible cases. The model is still under development (using a tentative
model for post-rupture behaviour) and must be validated with experimental data. The mo-
del has the potential to become a useful diagnostic tool because of the ability to accom-
modate some of the geometrical complexities of modular artillery charges.
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