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INTRODUCTION

The concept of block of consolidated gun propellant is studied at SNPE for several
years (at the end of the 70s). These blocks were proposed in developments of loads going
from 5,56 to 45 mm and studied in diameter 90 mm to be proposed in large calibre ammu-
nition. According to the function provided by the block of consolidated gun propellant
(mass increasing, progressivity increasing, facilitated by load, assistant to the passage of a
tail of projectile…), their dimensioning requires the knowledge of their ballistic and me-
chanical behaviours as well from a point of view theoretical as experimental. These stu-
dies made to SNPE have for objective to establish a model of behaviour integrated into
the code of numeric simulation of internal ballistics of gun MOBIDIC-NG.

EXPERIMENTAL INVESTIGATIONS

The development of the consolidated propellants needs both knowledge of the gun
propellant composition (like the choice of the binder) and the quality of the block such as
binder composition, apparent density or geometry. These various parameters are prepon-
derant factors for the consolidated propellants ballistic behaviour. To understand it, me-
chanical and combustion studies were realised on single and multi-base propellants from
5,56 to 90 mm calibre guns.

The main characteristics of ammunitions with consolidated charge are an im-
portant part of the propelling charge located around the projectile and the pre-
sence of ullage or granular propellants between the projectile and the charge.
Experimental observations have showed that ignition phase of a consolidated
charge is significantly different from the one of a granular charge. So, under-
standing, control and optimisation present a formidable challenge. In order to
better understand the consolidated propellants ballistic behaviour, experimen-
tal set-up and comprehensive theoretical model are under development. The
paper reports both points.
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Propellants deconsolidation observation
The packing does not break the grains but deforms and closes the perforations. Thus,

the debit is different and the late opening of the perforations increases the progressivity of
the overall charge.

Mechanical test
The mechanical test consists to apply a radial compression on the consolidated propel-

lant and to record the breaking strength (Figure No. 1).

Figure 1.

Extinction test
A simulator equipped with a shear disc (Figure No. 2) constitutes the experimental set

up. The test consists to blow out the consolidated propellant combustion. Single base pro-
pellants (D = 30 mm, H = 30 mm) with 1,35 and 1,45 g/cm3 apparent densities were
tested.

Figure 2.

The apparent density being the same, higher is the rupture pressure, smaller are the ag-
glomerates. Grains are found from 60 MPa with the smaller apparent density. With the
higher apparent density, there are approximately 8% of agglomerates formed by 21 to 25
grains at 53 MPa.
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Closed vessel characterisation with fixed consolidated propellant
The closed vessel has been modified to hold the consolidated charge into a cylinder.

Figure No. 3 shows the experimental set up. Tests were performed on single base propellant
(D = 40 mm, H = 30 mm) with 1,35 and 1,45 g/cm3 apparent densities. Internal and exter-
nal pressures were recorded and values of the difference are about 9 MPa with 1,35 g/cm3

apparent density and 13 MPa with 1,45 g/cm3. This difference of pressure increases with
the apparent density of the consolidated propellant and corresponds to the break-up or its
beginning. From this study, we can qualitatively conclude that consolidated charges are
impermeable.

Figure 3.

Classical closed vessel test and mechanical/combustion relation
Tests are performed in closed vessel with standard igniter. Single, double and multi-

base consolidated charges are studied with different densities, diameters and binders. We
determine the percentage of the combustion surface area reported to the consolidated
grains surface area (defined as a geometry coefficient G). Some results of these tests are
given in the following figures for which double base propellant with two consolidated
propellant diameters 90 mm and 50 mm were used. On the Figures No. 4 and No. 5, the
geometry coefficient G is represented as a function of the maximal radial breaking
strength alone or reported to the consolidated propellant section.
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Figure 4.                                                                                 Figure 5. 

At same G, bigger is the block, higher is the force. The figure 5 shows an interesting
result since values of the geometry coefficient G are on the same curve. Next Figure No. 6
shows the influence of the couple binder/propellant on the coefficient G.

Figure 6.

THEORETICAL MODEL

In this section, model of two-phase flow and an emerging model of consolidated
charge introduced in MOBIDIC-NG code are presented. More recently, emphasis has
been placed on fully two-dimensional interior ballistics code MOBIDIC-NG. This code is
used in French military industries since it has been delivered to ETBS and GIAT Indus-
tries. Efficient numerical discretisation is utilised to solve two-phase flow everywhere
treating in this way large-scale void between regions occupied by the propellant or after-
body projectile [1]. Code modularity and case of code modification are being incorpor-
ated. Applications to solid propellant systems as well as numerical solution method are
also presented in reference [2].

Model of two-phase flow
The model of two-phase flow (used for a granulated charge) is based on the theory of

multiphase mixtures which is formulated to treat each phase as fully compressible and in
total thermodynamic nonequilibrium. This model consists of partial differential equations
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of conservation applied to each phase and interactions between the phases enter the the-
ory via source terms that are added to the single phase conservation laws. More constitu-
tive relations or equations are introduced to better describe the system but they do not
change the meaning of the basic model stated as:

Conservation of mass :                      

Conservation of momentum :          

Conservation of energy :                   

To close the set of equations, changes in the solid volume fraction other than due to
combustion are related to the pressure differences existing between the two phases and
the contact forces between grains:

The state of the mechanical desequilibrium is driven by the viscosity of compaction
that expresses the velocity at which pressure equilibrium is reached. In our situation, it is
reasonable to assume pressure equilibrium. To do that, we force the gas and the solid pres-
sure to be in pressure equilibrium by using a relaxation technique. 

Modelling consolidated charge

In conventional guns, progressivity of the propelling charge is usually enhanced
through surface area modification (multiperforated grain geometries) or chemical tailor-
ing of the propellant linear burning rate. In a consolidated charge, enhanced progressivity
results from a surface area increase as the compacted charge burns through or fractures
into smaller aggregates along stress lines in the charge. This break-up may be aided by
external or internal pressurisation. 

To model this phenomenon, we adopt a continuous deconsolidation process of the
compacted charge toward a granular charge. A numerical problem that is linked to the
modelling problem is that of distinguishing without ambiguity between the two materials
that may be involved (granulated or consolidated charge) since the behaviour of these ma-
terials is different.

The deconsolidation process is modelled by a reaction progress variable I which deno-
tes the deconsolidation fraction of the compacted charge and accordingly assumes values
between 1 (granulated propellants) and 0 (consolidated charge). Being carried with the
fluid, I has an initially known distribution and its evolution is governed by an advection
equation  

.
I = 0 if no deconsolidation process occurs or by a rate equation  

.
I = r. The reac-

tion rate r allows a controlled release of surface area through a continuous deconsolida-
tion process. To model this reaction rate, a combined experimental and theoretical ap-
proach is necessary. For computational convenience, we have used to express this
equation in a conservation form.

103

Investigations for Modeling Consolidated Propellants

+=∇+ aaata cV     )( .)(
→→

ρρ

+=+∇+ aaaaaataa mIpVVV
→

→→→→

    )    ⊗( .)( φρρ

+=+∇+ aaaaaataa eVpEE   ]  ) ( [ .)(
→→

φρρ

)(           .   )( sgs
gs

s

s
ssts pp

c
V β

µ
φφ

γ
φφ −−+=∇+

+
→→



According to the value of I, it should be possible to identify each material during the
course of calculation and so choose the corresponding modelling. Although the develop-
ment rate of the propelling charge surface area is the main factor of interest, other factors
are also important and necessary for a more complete two-dimensional modelling of the
process. Details such as gas permeability or state of compaction are quite difficult to eva-
luate for consolidated charges. In view of experimental data on this subject [3], we can
qualitatively say that gas permeation does not occur (indicating large interphase drag). It
implies that fluid velocities are in equilibrium and the relaxed solution for the velocities is
then the center of mass velocity. This condition no longer applies in the packed bed where
the finite value of the drag force furnishes an information on the velocity difference bet-
ween phases. To model dynamic compaction, we make the simplest assumption that the
consolidated charge is not allowed to lose its shape (no compaction occurs).

Numerical simulations

As a test problem, MOBIDIC-NG is used to study the displacement of a packed or
consolidated charge under pressure effects delivered by an igniter. The configuration,
with ullage located on both sides of the charge and described with a solid volume fraction
equal to 10-7 is given by the figure 7. For the simplicity of analysis, simulations are per-
formed with an inert propelling charge and one-dimensional geometry.

Figure 7.

Initial solid volume fraction is 0.8. With a packed bed, the grains are dispersed by ig-
niter output gases. The propelling charge is permeable to the gas phase and the mecha-
nism of drag serves to move the propellant and to modify the solid volume fraction. Time-
evolution of the mixture is shown in figure 8 where velocities and solid volume fraction
are displayed.

Figure 8.
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Results for a consolidated charge are given by the Figure 9. This charge acts like an
accelerating projectile and the solid volume fraction does not change. 

Figure 9.

In particular, the figure illustrates the velocities of the two phases that are equal inside
the consolidated charge. The deconsolidation factor curve is similar to the solid volume
fraction one and is able to identify and to follow propagating material interfaces. This
interface is propagated through the solution space with low diffusive character.

CONCLUSIONS

The experimental characterisations in mechanics and combustion of the consolidated
gun propellant made it possible to better know their behaviours according to the signifi-
cant parameters that are the composition of the powder, the quality and the quantity of
binder, the apparent density and the geometry of the block.

An emerging model introduced in MOBIDIC-NG for studying consolidated charge is
developed and studies carried about it have shown that a combined experimental and
theoretical approach leads to develop or to combine appropriately detailed submodels so
that their interactions within the overall interior ballistics model provide an increased pre-
dictive or diagnostic capability. 
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