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INTRODUCTION

Research on ageing of propellants is in general mainly focussed on the safety aspects
regarding storage of propellants. The safe storage lifetime of nitrocellulose (NC) based
propellants is limited due to decomposition of NC. The decomposition is suppressed by
the application of stabilisers. Many efforts have been put into the understanding of the
mechanism of decomposition and behaviour of NC and stabilisers [1–6]. The stability can
be predicted by measuring the stabiliser depletion by HPLC [7] or by Heat Flux Calori-
metry (HFC) [8].

Decomposition of NC, however, not only leads to heat production that can finally re-
sult in run-away reactions, but the decomposition also causes a break-down of the nitro-
cellulose polymeric chains [9, 10]. This results in a decrease of the mechanical integrity
of the propellant grains [11, 12]. In case of gun propellants the mechanical properties af-
fect the ignition behaviour of the propellant grain bed. Embrittlement may lead to en-
hanced breakage of grains, which in turn leads to an increase of the burning surface area,
finally resulting in an accelerated pressure rise and a diminished porosity of the propellant
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bed during firing. Consequences may be an irregular pressure build-up, pressure waves or
increased peak pressures [12].

The aim of this investigation is to gain more qualitative insight in the effects of ageing
on the internal ballistic properties of gun propellants and to select a number of parameters
that provide indications with respect to the safe use of gun propellants. For this purpose
various properties of a single base (SB) and a double base (DB) gun propellant have been
determined before and after artificial ageing.

EXPERIMENTAL

The gun propellants that were used for this study are a 7-hole SB propellant for Ho-
witzer charges, and a flake DB propellant for mortar application.

The heat development of both propellants was examined by microcalorimetry at the
same conditions as the artificial ageing. The ageing procedure is performed in the Isother-
mal Storage Test [1], in closed stainless steel vessels of 70 cm3, with a sample mass of ap-
proximately 5 grams. The advantage of this ageing procedure is that it continuously pro-
vides information about the heat generation during the measuring time. Afterwards it is
possible to calculate the energy decrease by integrating the obtained heat versus time
curve [2]. The calorific values of the unaged and aged propellants were determined by use
of a bomb calorimeter.

The change of polymeric chain length of the propellant samples was determined by
means of gel permeation chromatography (GPC). Polystyrene standard samples were
used as references for the calculation of the molecular weights. Although the obtained
molecular weights are therefore not absolute but relative values, the results provide a
good indication of the ageing effect.

Closed vessel (CV) tests were carried out with uncompressed grains as well as grains
that were quasi-statically pressed as described below. The obtained pressure-time data are
used for the calculation of the dynamic and characteristic vivacity, L and Lk, and the burn-
ing rate, r. These parameters are calculated as described in STANAG 4115 [13], the burn-
ing rate is only calculated for the uncompressed samples at the pressure interval from 0.2
to 0.8 Pmax.

The effect of ageing on the mechanical properties was investigated by means of a
quasi-static compression test, which comprises the compression of a propellant bed and
subsequent firing of the fractured grains in a CV [14]. Quasi-static compression is relati-
vely simple and provides good indications with respect to propellant bed behaviour
during the first stages of ignition and combustion in a gun.

For the quasi-static compression test, 300 grams of propellant is quasi-statically pres-
sed for 4 seconds at 300 Bars. The compression is performed at –40°C. After acclimatisa-
tion CV tests are performed with a loading density of 0.214. Extrapolation of the change
in linear vivacity between 0.2 and 0.7 Pmax to P/Pmax = 0 results in a value that is a meas-
ure of the destruction of the propellant grains. This value corresponds to the relative sur-
face area at the beginning of combustion due to the fractured grains [14], and is some-
times called ‘relative surface area’. For various applications one can use specific criteria
for the ‘relative surface area’. 
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RESULTS AND DISCUSSION 

Chain length NC

The results of the GPC measurements are given in Fig. 1a/b. Important data with re-
spect to the polymeric chain length of NC are the (weight average) molecular weight
(Mw) as well as the molecular weight distribution. The latter can be determined from the
ratio between weight average and number average molecular weight (Mw/Mn). These re-
sults of the GPC-measurements are given in table 1.

Figure 1 a/b: Results of GPC-measurements: molecular weight distributions of unaged
and aged SB propellant (lett) and DB propellant (right).

The results show that the chain lengths of propellant grains, which were aged for a pe-
riod that is equivalent to 20–30 years, is shortened by 50% (SB) to even 80% (DB). Fur-
ther the width of the mole weight distributions is decreased as well, by 15% and 40% re-
spectively. It is reasonable to assume that both factors affect the mechanical properties of
the propellant grains.

Table l: Results of GPC-measurements

Burning properties

The characteristic vivacity, Lk, and the parameters in Vieille’s burning law r = α × Pβ

that were calculated from the CV test results are given in table 2. For reasons of compari-
son the burning rate at the arbitrarily chosen pressure of 150 MPa is given too.
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Table 2: Burning properties of unaged and aged propellants

The results show that the burning properties have hardly changed. The change of the
pressure exponent, β, is compensated by the change of α, which is reflected in the calcu-
lated burning rate. This means that the burning rate curves of aged and unaged propellants
overlap. This applies for both propellant types.

As mentioned above the samples were aged under confined conditions. In another
(unpublished) study we have aged the same type of SB propellant in open trays. In that
case, Lk showed an increase of 16% while the burning rate increased 10 to 20% as a result
of significant changes in both α and β. Simulations indicated that in that case peak pres-
sures in a gun increase by 30%.

Mechanical properties

As an example the results of CV tests that were performed after quasi-static compres-
sion of SB propellant at –40°C are plotted in fig. 2.

Figure 2: Vivacity curves of unaged (left) and aged (right) SB gun propellant.

The ‘relative surface areas’ that are derived from the extrapolated relative vivacities
are given in table 3.

Table 3: Results of quasi-static compression: relative surface areas
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The data in table 3 show that the mechanical integrity of both propellants decreases
significantly due to ageing. The increased surface area of the propellant bed will lead to
an accelerated pressure rise in a gun during firing while the increased fines fraction re-
sults in a diminished porosity. Consequences may be an irregular pressure build-up, pres-
sure waves or increased peak pressures [ 12].

Criteria for the ‘relative surface area’ depend greatly on the weapon system for which
the propellant is developed. Further, loading density and design peak pressure determine
whether problems will arise due to increased ‘relative surface area’ caused by ageing. Si-
mulations show that the peak pressure strongly rises at increasing ‘relative surface areas’
in case of at high loading densities, while the muzzle velocity is hardly affected (Fig.
3a/b).

Unsafe situations or damage to the weapon as a result of the change in burning beha-
viour can obviously be expected in the case of high loading densities and when ammuni-
tion operates near the maximum allowable peak pressure. In these cases gun simulator
tests are recommended to rule out the danger of unsafe application of the propellant.

Figure 3a/b: Peak pressure and muzzle velocity plotted as a function of the ‘relative sur-
face area’, A(rel), for some weapon configurations (D = loading density [kg/dm3]).

Heat development and energy content

The thermodynamic properties of both propellant types hardly change when aged un-
der confined conditions as shown in Table 4.

Table 4: Change of calorific values due to ageing

The change of calorific value is often used to determine whether an aged propellant
meets the ballistic criteria. Usually the calorific decrease is very small, theoretically re-
sulting in a minor decrease of the muzzle velocity [15]. This is, however, ooly true if other
propellant parameters that are related to the burning behaviour, like the mechanical pro-
perties, remain unchanged.
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Discussion

The results described above indicate that a number of parameters significantly change
during ageing. These parameters are specifically those that are related to the mechanical
properties. Their changes arise mainly from the decrease of the polymeric chain length of
the main constituent, NC. Parameters like the energy content, on the contrary, hardly
change.

The burning rate appears not to change during ageing under confined conditions As
mentioned above, however, if propellants are aged under unconfined conditions a rather
dramatic increase of vivacity and burning rate can be found, possibly caused by evapora-
tion effects leading to (hair) cracks and hence an increased surface area.

The safe lifetime of conventional gun propellants is generally derived from propellant
parameters that are closely connected to thermal properties. These might be the heat deve-
lopment caused by NC degradation or the content of stabilisers that prevent NC degrada-
tion and heat production. In fact, in these cases the safe storage lifetime is considered.

The results of this study show that the decrease of mechanical integrity as a result of
ageing may lead to unsafe application of propellants. The same applies in case of diffu-
sion of a phlegmatiser due to ageing, which causes a comparable change of vivacity. In
other words, the safe ballistic lifetime may be limited due to ageing.

In order to be able to provide the user with complete information about the conditions
of propellant with respect to its lifetime, both the safe storage lifetime and the safe ballis-
tic lifetime should be considered.

A number of parameters that provide good indications with respect to mechanical in-
tegrity is mentioned in table 5. If proper criteria for these parameters are available, the
execution of only a small number of these tests will be sufficient.

Table 5: Selection of parameters and test methods

CONCLUSION

The change of polymeric chain length of NC, caused by degradation of NC during
ageing, results in a loss of mechanical integrity of propellant grains, while thermal pro-
perties and burning behaviour may hardly have changed. The loss of mechanical integrity
leads to increased grain fracture during ignition and the first stages of combustion in the
weapon. Depending on loading density and design peak pressure, this may lead to unsafe
situations with respect to pressure build-up.
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It is concluded that the lifetime of conventional gun propellants is no only determined
by thermal stability because changes of the mechanical characteristics may finally lead to
unsafe employment. Both safe storage lifetime and safe ballistic lifetime should be consi-
dered in propellant surveillance. Several test methods are recommended to examine the
ballistic lifetime, like GPC, quasi-static compression followed by closed vessel tests, and
gun simulator tests.
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