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INTRODUCTION

Gun wear has been known as an inevitable problem in use of current gun system, al-
though extensive efforts have been paid to minimize it in the world. Study of gun wear is
divided into three aspects known as ablation, scoring and gas erosion. Since ablation and
scoring is often observed at a terminal stage of the gun barrel lifetime, minimizing the gas
erosion is believed to be critical to enlarge the gun barrel lifetime. Two major research
streams have been existed in the elucidation of the gas erosion mechanisms. One of the
major streams is that the gas erosion is controlled by thermal events from the combustion
gases onto gun barrel surface. According to this mechanism, isochronic flame tempera-
ture, which is calculated from gun propellant composition, was believed to be an only
factor to determine the gas erosion rate. However since 1980 a new type of gun propellant,
which contains a nitramine compound to reduce the isochronic flame temperature and in-
crease the impetus, was developed. Although the introduction of the nitramine was ex-
pected to reduce the gas erosion, the observed results were against the prediction [3,4].
Based on this result, a new concept was proposed, in which the dominant factor is not the
thermal effect but several chemical reactions between the combustion gaseous products

Our previous study suggested that the gun barrel gas erosion is controlled pre-
dominately by thermal conductivity of hydrogen gas and partially by positive
chemical effects of CO and CO2 gases and a negative chemical effect of nitro-
gen gas [1].  In this report, the hydrogen gas erosion theory is applied for seve-
ral conventional gun propellants i.e., single, double and triple base gun propel-
lants. Gas erosion rates, which were evaluated with a gas erosion simulation
bomb, were found to well correlate to estimated gas erosion rates at actual fir-
ing from literature [2]. In erosivity analysis of the conventional gun propel-
lants, the gun propellants used are clustered into two groups, i.e. a single-dou-
ble base group and a triple base group. In the triple base group, an inflection
point in a propellant impetus vs. log of the erosion rate plot indicates that best
trade-off between the impetus and the gas erosion.
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and the gun barrel metal surface. Several mechanisms were proposed such as reduction of
gun barrel by CO [4], oxidation of the gun barrel by CO2 [4] or by H2O [5-7], gun barrel
embrittlement by hydrogen gas [8] and heterogeneous combustion of the nitramine
particle in gas phase [4]. 

Recently our research group developed a new erosion simulation bomb which is ex-
pected to predict the gas erosion at isolated condition from the other erosion phenomena
such as the scoring [1]. From results of the erosion simulation test, a new gas erosion me-
chanism which reconciles the thermal effect and the chemical reactions was proposed. In
the proposed mechanism, most of the chemical reaction effects can be explained as the
thermal effect by thermal conductivity contribution of the combustion gaseous product
described as, in which Tf is the isochronic flame temperature and Mw is a
mean molecular weight of the combustion gaseous products. Although the new erosion
technique was applied for research of a new LOVA gun propellant formulation which in-
cludes a new gun propellant binder CAN [9], entire gas erosion analysis in a wide iso-
chronic flame temperature range was remained as future work. In this presentation, deve-
lopment of the practical estimation technique by an improved small-scale gas erosion
simulation bomb was introduced in details, and effects of the gas erosion were discussed
from a point of gun propellant composition.

EXPERIMENTAL
Erosivity 
Measurement

Like as our previous re-
port [1], gas erosion rate of
gun propellants was measu-
red with a double-choke type
gas erosion simulation
bomb. A schematic setup of
the simulation bomb is illus-
trated in Fig 1. The gas ero-
sion simulation bomb has a
chamber volume 180 cm3

and is equipped with a dou-
ble-choke nozzle system.
The double-choke nozzle
consists of an inner tubular

test piece and an outer choke. Orifice diameter of the outer choke (3 mm) is adjusted to be
smaller than orifice diameter of the test piece (5 mm) so that speed of combustion gas
flow does not exceed speed of sound. This type of double-choke erosion evaluation sys-
tem was found to simulate the gas erosion at an isolated condition from the other types of
gun wear [1]. The test piece was shaved in 60 degree apex cone shape to avoid unnecessary
gas flow turbulence occurring at the chamber edge. The gas erosion rate of gun propel-
lants is evaluated by the test piece weight-loss. The weight-loss measurement was care-

Tf / √Mw,
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Fig. 1: A schematic set-up of gas erosion simulation
bomb, (A) Overall cut-view of the simulation bomb, (B)
Cut-view of the test piece.



fully conducted since carbon and oily residues sticking to the test piece critically affects
the error of the weight-loss measurement. Cleaning procedure of the test piece is follow-
ing. First the test piece, which is detached from the simulation bomb immediately after
the test, was brushed with acetone and toluene. Then the test piece was cleaned in super-
sonic cleaner, and finally it was dried at 60°C. This cleaning procedure can reduce the
error of the gas erosion rate measurement down to 2%. In the gas erosion rate measure-
ment, the test piece weight-loss per one shot for each gun propellant sample was used to
evaluate the gun propellant composition dependence of the gas erosion.

Gun Propellant Sample

Eight types of gun propellants were used to investigate the composition dependence
of the gas erosion. The composition is summarized in Fig. 2. The gun propellant samples
cover popular conventional gun propellant formulations called as single base, double
base, and triple base gun propellants. The single base gun propellant (Sample SB) con-

sists mostly from nitrocellulose at over 80 wt%. The double base propellants (Samples
DB-1, DB-2) contain nitrocellulose and liquid nitrate ester compound as the major ingre-
dients. The triple base gun propellants (Samples TB-1 to TB-5) consist from three major in-
gredients, nitrocellulose, nitroglycerine and nitroguanidine. The nitroguanidine is recog-
nized to plays an important roll to reduce erosivity by a “cool burning” [10] characteristics,
compared to the double base propellants. Isochronic flame temperature and impetuses of the
gun propellants are in ranges of 2400 to 3450 K and 900 to 1150 J/g, respectively.
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Fig. 2: Gun propellant sample compositions used in the erosion simulation test.



Sample amount used in the erosion simulation test was 50 g per shot. Since grain
shape of the gun propellant was found not to affect the gas erosion [1], several types of
gun propellant grains such as seven perforated and nineteen perforated shape were used in
this study.

RESULTS AND DISCUSSION

Validation of Erosion Simulation Test Results

In the gas erosion analysis, it is practically important to find a correlation between gas
erosion rate obtained with the simulation bomb and that in actual firing test. However the
validation is, in turn, a relatively tough problem because it is difficult to separate effects
of gas erosion from the other erosion effects in the actual firing test, and moreover there is
less data available for the validation. In this study, the validation was conducted with reli-
able erosivity data presented in the past Ballistic Symposium [2]. Fig. 3 shows a relation
between the gas erosion rate obtained with the gas erosion simulation bomb and gas ero-
sion rate estimated at a condition of 30 mm test gun firing. In Fig 3. the gas erosion in fir-
ing test was estimated by eq (1) [2] in which an propellant wear coefficient lnA was taken
from literature [2],

( 1 ),

where lnW is a log of gas erosion rate, Tmax is a maximum bore surface temperature. In eq
(1), the maximum bore temperature was estimated from eq (2) [2] by assuming full
charge firing,

( 2 ),

where Tf is the isochronic flame temperature, Ti is a initial gun barrel surface temperature,
Cm is a projectile initial velocity, d is a gun barrel bore diameter and m is a mass of gun
propellant charge. For easy understanding the gas erosion rate obtained with the simula-
tion bomb was expressed as a test piece diameter change by simple conversion from the
test piece weight-loss. As shown in Fig. 3, gas erosion rate was found to well correlate to
estimated gas erosion rate in an actual firing test.
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A relatively rough prediction of
real gun barrel lifetime was con-
ducted through the least square fit-
ting from Fig. 3. For a triple base gun
propellant TB-3 (M30A1 composi-
tion), the gun barrel lifetime 2660
rounds was predicted. Since the pre-
dicted value is well agreed to the re-
ported gun barrel lifetime for 155
mm Howitzer, 2700~3500 rounds [4],
the prediction result also supports the
verification of the erosion simulation
test method. 

Propellant Composition De-
pendence of the Gas Erosion

Our previous report suggests that
gas erosion of gun propellant should
be discussed by both the isochronic
flame temperature and combustion
gas composition which contributes
both the thermal and the chemical ef-
fects. In fact, as shown in Fig. 4, a
plot of isochronic flame temperature
vs. mean molecular weight of the
combustion gaseous products sug-
gests that a relation for the triple base
gun propellant is in a different trend
from that for the single base and dou-
ble base gun propellants. This diffe-
rence in the relations suggests that
gas erosion of the gun propellants
should be discussed separately as a
single-double base group and a triple
base group. Figs. 5 and 6 show plots

of the gas erosion rate vs. the isochronic flame temperature of the propellant and the gas
erosion rate vs. the impetus of the propellants, respectively. The both plots indicate that
the gas erosion rate was found to better correlate in the individual group rather than in the
overall. Unfortunately no RDX containing gun propellants were examined with the simu-
lation bomb. However it is possible to estimate the gas erosion with our past data [1]. Fig.
5 also contains an estimate trend for the RDX-Polyurethane base gun propellant. From
the trends in Figs. 5, it is easily understood that nitramine containing gun propellants are
more erosive than the conventional gun propellant. This result is a concrete support for
our past finding that the gas erosion is dominated not only by the thermal effect, which
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understood as a increase of thermal
conductivity mostly by hydrogen gas
in the combustion gaseous products.
If all of the erosivity data are discus-
sed without clustering against discus-
sed in Fig. 4, the data looks scattered
or a minimal erosive point should be
observed.

For the triple base propellant
group, an inflection points of impetus
1030 J/g in Fig. 6 were observed. Be-
low the inflection point, decrease of
the impetus does not so much contri-
bute to the decrease of the gas ero-
sion. Above the inflection point, 
increase of a slope in gas erosion-im-
petus relation indicates that much
erosivity reduction can be achieved
with sacrificing less impetus. This
finding implies that the best trade-off
between the thermodynamic parame-
ters and the erosivity is lying above
the inflection point. However above
an impetus 1070 J/g, the gas erosion
of the triple base gun propellants
seems to be close to that of the sin-
gle-double base gun propellant
group. The result indicates that for
the triple base group the thermal ef-
fect predominately controls the gas
erosion and less chemical effect can
be expected to reduce the gas erosion
above the impetus. 

CONCLUSION

By using a gas erosion simulation bomb with double choke system, effects of gas ero-
sion was quantitatively evaluated for several gun propellants, which cover single, double
and triple base gun propellants. From the correlation between obtained gas erosion rate

160

Interior Ballistics

2200 2400 2600 2800 3000 3200 3400 3600
-1.5

-1.0

-0.5

0.0

Single-Double Base Group
Triple Base Group

lo
g(

W
s,

 w
t%

/r
ou

nd
)

Isochronic Fame Temperature, K

RDX-Polyurethane Base Group

(estim
ated)

Fig. 5: Relations between log of gas erosion rate
by the erosion simulation test log(Ws) and iso-
chronic flame temperature for the single-double
base group and the triple base group. Dashed line
shows an estimated trend of RDX-polyurethane
base group.

900 950 1000 1050 1100 1150 1200
-1.5

-1.0

-0.5

0.0

Single-Double Base Group
Tr iple Base Group

lo
g 

(W
s,

 
w

t%
/r

ou
nd

)

Impetus of Propellant, J/g

Fig. 6: Relations between log of gas erosion rate
by erosion simulation test log(Ws) and impetus
of propellant for the single-double base group
and the triple base group.



and gas erosion rate estimated from literature, validation of the gas erosion simulation
technique was established. Estimated gun barrel lifetime for M30A1 propellant is agree-
able to a literature value.

Based on the hydrogen gas erosion theory that we proposed in previous report, gun
propellant samples were clustered into two groups for the gas erosion analysis i.e. a sin-
gle-double base group and a triple base group. Correlation in the individual group was
found to be better than the overall correlation. In the triple base group, an inflection in a
relation between propellant impetus vs. log of the gas erosion rate was observed. This
new finding suggests that the base trade-off between the impetus and the erosivity in the
triple base group.

We believe that the development of the new gas erosion simulation bomb and the pro-
pellant ingredient depending trend in the gas erosion are an important direction in future
gun propellant formulation research.
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