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INTRODUCTION

During the shot, the inner wall of the barrel receives the total thermal flux resulting
from the combustion of the propellant charge and from the friction of the projectile. The
knowledge of this flux is very important for wear problems in gun barrels because it go-
verns the whole thermal behaviour of the barrel and for thermo mechanical calculation
codes. But, direct calculations and direct measurements of this flux are quite difficult
(high gas pressure, very fast dynamic, ...). Today the more reliable way to determine the
total thermal flux, the inner wall and the interface temperatures consists of temporal mea-
surements of the temperature inside the tube associated with an inverse conduction finite
difference method. In the past, we validated this experimental method for the medium
calibre guns. 

Here, we are interesting in using this experimental method for the 120 mm chromium
testing gun tube with APFS_DS with and without wear reduce additives in the propellant
charge. Once we validated the experimental fluxes, the thermal efficiency of APFS_DS
with additives is determined. 

Frictional, convective and radiation heating knowledge is important when at-
tempting to understand the degradation mechanisms of the 120 mm gun barrel
inner wall. Bore surface temperature and heat transferred to the 120 mm chro-
mium testing gun tube with APFS_DS (without and with additives in the pro-
pellant powder) can be experimentally determined by applying an inverse heat
conduction method on temperature measurements obtained at different depths
in the gun barrel. Here, the gun tube involves fifteen seating, distributed in
three sections along its length. We used a very high frequency ultrasonic sensor
inside the tube to help the machining and to measure the thickness with an ac-
curacy of +/– 10 micrometers. The total input flux is determined then validated
and its maximum values range from about 1 GW/m2 to 300 MW/m2. The maxi-
mum inner wall, the chromium steel/interface temperature and the thermal effi-
ciency of additives are also determined. This latest is an interesting result. Next
step of our work will concern the validation of the MECCAD code.
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In this paper we will also look after the gas discharge calculation (when the projectile
moves in the barrel) and compare with gas pressures measured along the barrel.

PRESSURE AND TEMPERATURE MEASUREMENTS IN A 120
MM CALIBRE CHROMIUM TESTING GUN TUBE

Sensors location

Five pressure sensors (piezoelectric ones) are located respectively at 80, 470, 1025,
2750 and 5000 mm from the breech.

Internal temperatures were measured using intrinsic iron/constantan and chromel/alu-
mel thermoelectric sensors. This measurement procedure presents a very short response
time and is validated for medium calibre guns: see [1, 2, 3 and 4]. 

The gun barrel involves fifteen seating, distributed in three sections along its length.
The axial locations are respectively near the forcing cone (1300 mm from the breech), the
middle (4200 mm from the breech) and near the end of the tube (6120 mm from the
breech). Due to the very steep temperature gradients existing near the inner surface of the
gun barrel, the measuring holes are drilled as to set the sensors at the shortest distance
from his surface. For each cross section we need three thermocouples located at three
depths: for inverse conduction calculation method only two depths are used, the third
depth which is the farthest from the inner wall is used for validation tests. Upstream sen-
sors should be the nearest as possible from the inner surface of the gun barrel. The closest
distances that could be practically located without destruction due to internal pressure are
respectively 630, 370 and 270 micrometers with an accuracy of +/–10 micrometers. For
holes machining help and thickness knowledge, we used a very high frequency ultrasonic
sensor inside the tube: see Fig. 1. 

The thermoelectric sensors are constituted by 0.25 mm diameter constantan wires
welded at the bottom of a 1.65 mm diameter flat bottom hole [1]. A precision Teflon guide
is used to ensure that the measuring wires are located exactly in the centre of the drilled
holes. The steel-constantan junction is obtained by using a capacitor discharge technique.
Once the welding is assured, the guide is retired and replaced by glue. The iron wire is
welded at the outer surface of the tube. This thermoelectric sensor power is about 
52 µV/°C, if we don’t consider the iron-steel parasite couple during the shot.

Studies realized at Giat Industries have shown that during a gun shot, we under-esti-
mate the barrel temperature (when the initial tube temperature value is about the ambient
temperature) with this BRL’s technology. So, in addition, two chromel/alumel thermo-
electric sensors have been tested and the two 0.25 mm diameter wires are welded at the
bottom of the holes. Here, there is no more parasite couple during the gun shot and the
measure should be more accurate. Moreover its temperature range is between –200°C to
1250°C, while the constantan/iron temperature ranges between 0 to 700°C.
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Data acquisition system

The sampling frequency of the Nicolet data acquisition system used is 10 kHz. It ena-
bles the recording of the heating and the cooling phases [5].

Tests conditions [5]

The tests were carried out at ETBS on February 1999, on a 120 mm calibre testing gun
barrel. The tube length is about 6 meters. The inner surface of this tube is protected by a
chromium coating. There was no wear on this tube before the tests. The shots were reali-
zed with inert APFS_DS of about 7 kg (without and with 230 gr of wear reduce additives
in the propellant charge). We used double propellant charges.

During the tests, which are usually reproducible, we saw:
– breakings of some thermocouples caused by vibrations, by the muzzle break blow,
– thermocouple signals perturbed by the 50 Hz local circuit supply frequencies, ...
– chromel/alumel sensor signals too small because of too large wires diameters.

One part of Fig. 4 and 5 show the numerically filtered (smoothing method) temperatu-
res measured in the section near the end of the tube with APFS_DS respectively without
and with additives.

First analysis of the wear reduce additives efficiency

The additives are located at the top of the charge. The analysis of the temperature 
measurements shows us a good thermal efficiency of ammunitions with additives and with
a small decrease of the gun performances (the maximal value of the projectile velocity
decrease is about 1.25%).

The temperature decreases are between: 
– 3% to 4% in section near the forcing cone,
– 11% to 13% in section near the middle of the tube, 
– 5% to 9% in section near the end of the tube.

DETERMINATION OF THE TOTAL INPUT FLUX BY USING AN
INVERSE HEAT CONDUCTION METHOD AND VALIDATION

Bore surface temperature and heat transferred to the gun tube can be experimentally
determined by applying an inverse conduction method on temperature measurements ob-
tained previously.

Principle of Raynaud and Bransier inverse heat conduction method [6]

It’s commonly assumed that, for transient phenomena, the axial heat transfer is negli-
gible versus the radial one: see [7]. In these conditions, a non linear unidirectional space
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marching inverse conduction finite-difference algorithm derived from Raynaud & Bran-
sier [6] and adapted to cylindrical coordinates can be applied to determine the heat fluxes
incoming to the barrel interior wall from thermographs recorded. We also consider that
the heat transfer is axisymmetrical: all the sensors at the same depth in a section, receive
the same heat flux.

First, a direct calculation using an implicit scheme is realized between the two sensors
(upstream and downstream) and we determine the flux near the upstream sensor. The in-
verse calculation (explicit scheme) has got a space progression and is then realized be-
tween the upstream sensor and the inner wall to determine the temperature field in this
area. Finally, the total input heat flux is calculated from an energy balance on the half-
mesh of the cross surface area.

The space meshes are identical in the direct and the inverse area. The time stop used
for the calculation is a multiple of the acquisition time step, to avoid interpolations be-
tween the recorded temperatures. The time step is chosen as to respect this criteria [8]:

∆t* = a.∆t/E2 > 0.01 (1)

where:∆t*, is the adimensional time step 
∆t, is the time step (s) 
a, is the material diffusivity (m2/s) 
E, is the distance between the inner surface and the upstream sensor (m). 

The choice of the space step is also important if we want a stabilised inversion. This
latest is chosen as to respect the “mesh Fourier number”:

M= a.∆t/∆r2 > 1 (2) 

where ∆r is the space step (m).
If 10-3 < ∆t* < 10-2, the inverse calculation is possible but we need recorded thermo-

graphs without noises and/or little space steps, but anyway we obtain a reduce flux with a
slower dynamic.

The reliability of this method is also depending on the accuracy of different entrance
data [2]:
– thermal properties of the material in which the sensors are embedded and of the chro-

mium coating, 
– location of the sensors (we used an ultrasonic sensor): see paragraph before, 
– thermometry problems (thermoelectric power determination, signal disturbances).

Determination of the total heat flux entering the inner wall of the 
120 mm chromium testing gun tube with APFS_DS

The total input heat flux is determined and its maximum values range from about 
1 GW/m2 to 300 MW/m2, respectively from the forcing cone to the end of the tube. Fig. 2
shows the total heat flux entering the inner wall versus the time, near the end of the tube.
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Its maximum valne for the APFS_DS without additives is about 270 MW/m2 with a slop
up time of about 3 ms. The numerical conditions of the calculation are ∆r = 10 µm and ∆t
= 1,5.10 -4s, so in this cross area ∆t* = 0.065 and M ~13.

For the APFS_DS with additives, we calculated the flux with the same numerical con-
ditions.

So it is possible to determine the thermal additive efficiency.
Fig. 3 shows the inner wall temperature and the chromium/steel interface temperature

neat the end of the tube, for the APFS_DS without and with additives. Once these results
validated (next paragraph) we could discuss of these ones and evaluate the thermal effi-
ciency of the additives we used.

Validations

Validation tests are carried out: the total input fluxes are used as boundary conditions
of a direct calculation code names THETA1D2D [7]. This code calculates the temperatu-
res at any point of the barrel and at any time of the simulation. The measurement/calcula-
tion comparisons are satisfying: see Fig. 4 & 5. And this validation is absolute when the
measurement/calculation comparison is correct for the sensor the farthest from the inner
wall (which is located out of the inverse calculation area).

Fig. 4 & 5 show the results at the three depths of the comparison realized in the cross
area located near the end of the tube:
– there is little differences during the slop up time of the temperatures,
– these differences increase during the cooling phase; it’s because during the inverse

calculation, in this phase, the fluxes are positively disturbed. In fact the numerical pa-
rameters are optimised for the heating phase (fast dynamic) and not for the cooling
phase. If we reduce this non physical noise we validate the inverse method during the
cooling phase.
For the APFS_DS without additives in this section, the maximum inner wall tempera-

ture value is about 1100°C. We are below the melting temperature of the chromium. The
maximum interface temperature value is about 860°C and its application time is greater.
We are above the steel structural transformation temperature.

Second analysis of the additives thermal efficiency

Fig. 2 and 3 have shown the thermal of ammunition with additives in the propellant
charge. This is an interesting result which is not accessible by direct measurements and/or
by an interior ballistic calculation code. In the cross section near the end of the tube, addi-
tives reduce the inner wall maximum temperature value of about 250°; and the gun per-
formances are quite the same. The projectile velocity decrease is about 1%. In the others
cross sections the efficiency is also important: the maximum temperature decrease is
about 150° in the section near the forcing cone.
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COMPARISON WITH DIRECT FLUX CALCULATIONS: 
THE MECCAD CODE [3 and 4]

It’s now possible to validate the MECCAD code [4] for the 120 mm gun, so for large
calibre guns with ammunitions without additives.

The MECCAD code enables us to calculate the gas discharge and the heat exchanges
occurring in a gun barrel when the projectile moves in the tube and after it leaves the bar-
rel. And so it enables us to describe the thermal behaviour of a gun during the shot and/or
a burst.

First of all we have to compare the gas discharge (Pgas, ...) calculated by a numerical
interior ballistic code (1D, 2 phases) with the one measured: five pressure sensors were
used. Fig. 6 shows this comparison between calculations and experiments (when the pro-
jectile moves inside the barrel): we can see three maximum gas pressures measured along
the barrel and the gas pressure field calculated. We observe a difference which is more
important when we are nearer the end of the tube. Here the difference is about 250 bars.

So before going further in our comparison we have to be more accurate in the calcula-
tion of the gas discharge. We have to take into account in the interior ballistic code the gas
thermodynamic properties variability with the gas temperature and pressure, if possible.
This work will be done soon.

CONCLUSION

The inner wall chromium and the interface temperatures as well as the heat transferred
to the 120 mm chromium gun tube testing with APFS_DS (without and with additives in
the propellant charge) is determined by measuring the temperature evolution at different
depths along the barrel and applying a mono directional non linear inverse heat conduc-
tion algorithm on these temperature measurements. The maximum input flux values
range from about 1 GW/m2 to 300 MW/m2.

This study shows us:
– the know-how of temperature measurements, thus of holes machining with an accu-

racy of +/–10 micrometers; and of inverse calculations for large calibre guns,
– a method to determine the chromium inner wall temperature efficiency of wear additi-

ves. We saw, when we used our additives, that the chromium inner wall temperature
decrease is about 150° in a cross area located near the forcing cone.
Next step of our work will concern the validation of the MECCAD code for the 

120 mm gun barrel. This code enables us to study the gas discharge and the heat exchan-
ges occurring in a gun barrel during and after the shot. First of all we have to calculate
more accurately the interior ballistic gas discharge when the projectile moves in the bar-
rel.

Then overheating and cheaper predictions with MECCAD code will be carried out,
for example with the 155 mm calibre gun, where burst fires can induce wear and/or secu-
rity problems (self ignition of the modular charges).
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Figure 1: Ultrasonic sensor inside the tube. Figure 2: Total input flux entering the
muzzle inner wall area.

Figure 3: Inner wall and interface additives Figure 4: Comparison Tcalculated with
thermal efficiency. Tmeasured near the muzzle.

Figure 5: Comparison Tcalculated with Figure 6: Comparison Pcalculated with
Tmeasured near the muzzle (with additives). Pmeasures along the tube.
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