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INTRODUCTION

The UK Defence Evaluation and Research Agency (DERA) is investigating a number
of different electrothermal-chemical (ETC) gun concepts that utilise solid propellants.
One prime area of interest is the apparent alteration to Vieille’s Law as a consequence of
the introduction of electrical energy in the form of plasma into the ballistic cycle of a gun.
The apparent enhanced gas generation rate (EGGR) of propellants has been reported by a
number of researchers for many years [1,2,3] but the exact nature of the plasma propellant
interaction still remains elusive. EGGR levels have been differentiated for enhancement
‘during electrical discharge’ (EGGRDED) and ‘post electrical discharge’ (PEDEGGR)
from transient pressure records of closed bomb tests [4]. From a control perspective, it is
more desirable to have a propellant exhibit a high level of EGGRDED than a high level of
PEDEGGR. However, a high level of PEDEGGR would allow improved performance
with a minimal use of electrical energy.

This paper describes two sets of ETC experimentation conducted within a 400 cm3

closed chamber. The first set explores a number of different plasma compositions to de-
termine whether the EGGR levels can be affected catalytically. The second set explores
the enhancement values as a function of electrical discharge power when used with va-

This paper describes experimental investigations of the apparent variation in
enhanced gas generation rates in recent electrothermal-chemical closed vessel
studies. This enhancement is noted when electrical energy in the form of
plasma is discharged into pressurised burning propellant. The analysis used to
calculate the burn rates is based upon Vieille’s Law of burning. Two studies are
reported in detail here. The first investigates the effects of plasma composition
and the second that of electrical discharge power and propellant composition
upon the calculated enhancement levels. A summary of the closed vessel ana-
lytical techniques used and some suggestions to explain the phenomena are
given.
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rious propellants including high energy, low vulnerability ammunition (HELOVA) pro-
pellant compositions. The hypothesised existence of a plasma electrical power threshold
value for PEDEGGR is also explored [5].

STANDARD EGGR TESTING

In standard EGGR tests, around 49 g of propellant is ignited conventionally with a
Gevelot primer igniter aided by 1 g of gunpowder. Around 26 kJ of electrical energy in the
form of an electrical plasma is then added with a peak power of around 60 MW, dischar-
ged in around 0.8 ms from a capacitor based pulse forming network [6]. The electrical
energy is discharged into the combustion chamber at around 35 MPa through two electro-
des initially connected by a 20 mm length of (usually) 0.7 mm diameter fuse wire. The
fuse wire and electrode materials, mixed with propellant gases, form the plasma. Such di-
rect introduction of electrical energy is known as ‘current injection’ (C.I.) as opposed to
other discharge options such as offered by capillary plasma generators [7].

GAS GENERATION RATE ANALYSIS

The way in which the propellant characteristics change during the combustion cycle
can be studied in closed vessel experiments. The pressure in the chamber is measured as a
function of time (with for example piezo-electric pressure transducers) and isobaric con-
ditions are assumed to prevail. The pressurisation P(t) and rate of increase in mass of gas,
dm/dt within a closed bomb chamber during the combustion of solid propellant can be re-
lated by a semi-empirical law expressed as: 

(1)

where
F is known as the force constant of the propellant  
V0 is the free volume of the chamber at time t
ρ is the density of the solid propellant
S is the burning surface area at time t
β is a constant known as the burn rate coefficient of the propellant and
α is known as the burn rate pressure index of the propellant.

As the propellant changes phase the volume of the chamber reduces slightly due to the
effective space taken up by the propellant gas phase molecules being greater than that of
the propellant solid phase molecules.

βPα is often referred to as the propellant burn rate, r and is directly proportional to the
rate of change of pressure within the chamber if all else remains constant. Plots of dP/dt
or βPα (i.e. the burn rate, r) against P will give an approximate straight-line relationship
for α close to unity, reasonably constant S and V0 and allowances for heat loss. This is
known as Vieille’s Law of burning. The introduction of electrical energy is found to cause
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a deviation away from Vieille’s Law during the discharge and post discharge with some
compositions. 

Closed chamber gas generation rate analysis [4] was conducted for each test perfor-
med in both sets of experiments reported here, using the transient pressure records from
two co-planar calibrated piezo-electric pressure transducers. Analysis is conducted using
a code called BRLCB [8]. This code attempts to take account of the thermal effects of any
electrical discharge. The code assumes that the propellant burns in parallel layers and can-
not distinguish between possible causes of deduced EGGR. Previous studies [4,5] have
portrayed the variation in gas generation rates during and post electrical discharge as a va-
riation in the propellant burn rate coefficient. In the analysis, the burn rate coefficient pro-
file is integrated with respect to pressure over the appropriate pressure range during or
post electrical discharge. The integrated burn rate coefficient is then divided by the pres-
sure difference of the range to determine a pressure-averaged burn rate coefficient over
the appropriate pressure range. The resultant mean burn rate coefficients are then divided
by those from baseline tests where no electrical energy was discharged. This determines a
unitless quantity that indicates the level of enhancement in the burn-rate coefficient.
These are the quantitative definition of the EGGRDED and PEDEGGR levels. A level va-
lue of two indicates that the average burn rate coefficient over that pressure range is twice
that of a conventional burn rate coefficient.

EXPERIMENT 1 – THE EFFECT OF PLASMA COMPOSITION
ON EGGR

Standard EGGR tests were conducted using different fuse wire and electrode materi-
als. Copper, tinned copper, nickel, aluminium, carbon and steel fuse wires, 0.5 mm or 
0.7 mm diameter, were used with copper, copper, nickel, aluminium, carbon and steel
electrodes respectively. A sensitive double based nitro-cellulose and nitro-glycerine RDX
enriched propellant, composition X, was used. Twenty sticks 60 mm long were carefully
loaded in the same fashion for each test. Two baseline tests and several nominally identi-
cal electrical tests were carried out for each wire/electrode composition. Fig. 1 shows the
resulting pressure-time records from a full set of tests from one plasma composition (two
baselines and a number of nominally identical electrical tests). The ignition delay (i.e. the
time for the pressure to attain some defined value) was very variable and so each record
has been time-shifted so as to overlay in the early part of their pressure histories.

181

Variation in Enhanced Gas Generation Rates in Electrothermal-Chemical Closed Chamber Studies



The large random variability determined for EGGRDED and PEDEGGR between
supposedly identical electrical tests, obvious from plots such as shown in Fig. 1, was dis-
concerting. Ideally, a larger number of tests would have been fired. This being cost pro-
hibitive, any potential difference between the materials is somewhat obscured by the large
data scatter. However, certain statistical methods have been employed which take into ac-
count the large degree of variability and the limited data set. The first method employed
was used to determine the nature of the variability. The entire electrical test data set was
used to produce a ‘normal probability plot’. This is achieved by sorting the enhancement
values into ascending order and estimating the percentage population probabilities below
each value using statistical tables. When the values and the percentage probabilities are
plotted onto normal probability graph paper, a normal distribution in variability is conclu-
ded if the points lay along a reasonable straight line. For these tests a normally distributed
variability indicated that the cause(s) of variability were random.

With such a small sample size for each group, further analysis would be unsafe with-
out somehow increasing the sample size to increase the degrees of freedom and reduce
the standard deviation. Because the variability is random, the standard deviations for
EGGRDED levels can be combined from the entire wire/electrode composition data-set,
as can those of PEDEGGR; this was done and served to increase the degrees of freedom
and reduce the standard deviation making further statistical analysis safer. The next stage
in the analysis was to calculate the true mean of EGGRDED and PEDEGGR for each
wire/electrode composition to a significance level of 5 % (the range of values for which
one can be 95 % certain the mean will lie within). Fig. 2 and Fig. 3 shows the results of
such analysis for EGGRDED and PEDEGGR respectively. As can be seen, there seems to
be a small difference between the means, but there is some overlap between the ranges.

Further statistical analysis shows that there is no difference at the 5% significance 
level (with 23 degrees of freedom) between any of the EGGR averages except for 
copper and steel. These show a difference until the 2% significance level is reached for
EGGRDED and a difference between the pure copper and the steel for PEDEGGR at 5%. 
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These small differences between the averages would probably vanish if the small varia-
tion between the two pressure gauges were taken into account: an increase in the variation
would further spread the true mean ranges. Thus, the conclusion is that there appears to be
some small difference between the mean values for EGGRDED and PEDEGGR for diffe-
rent materials, but this difference can be accounted for by random variations within the
entire data set. These variations may be due to the experimental set-up conditions that
were not controlled or known: e.g. the position of the propellant at the moment of electri-
cal discharge, the condition of the wire at the moment of electrical discharge and the be-
haviour of the discharge itself within the test vessel.

EXPERIMENT 2 – THE EFFECT OF DISCHARGE POWER ON
EGGR

Previous work [4,5] has suggested a PEDEGGR power threshold may exist for pro-
pellants, whereby enhancement would only occur after a certain value of discharged elec-
trical power. A single based HMX poly NIMMO enriched propellant and two single based
nitro-cellulose and RDX enriched HELOVA propellant compositions, known as L1, L2
and L3 respectively, together with composition X were investigated using the standard
EGGR test set-up for threshold values. The electrical energy of these tests was varied but
the period of the discharged remained fixed at around 0.8 ms, and a 0.7 mm tinned copper
fuse wire was used for each test. Analysis of the EGGRDED and PEDEGGR values was
carried out for each propellant composition at each electrical power level. A modified
burn rate law relating directly to electrical power is defined here:

(2)

where
T is the enhancement threshold power, which is the subject of this work
ppeak is the average discharge power 
Ψ is the enhancement power density value (no enhancement is inferred with a value Ψ = 0)
and
ε is the EGGRDED or PEDEGGR enhancement level value. 
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r = βPα (1 + (ppeak –T) Ψ) = βPα ε  



FIGURE 4

Fig. 4 shows the deduced values ε for various power levels for two of the propellant
compositions. The curved confidence bands represent the 95 % confidence interval for
the regression statistics employed. Fig. 5 shows a summary of the enhancement power
density values for each propellant composition. The regression line gradients from plots
such as Fig. 4 give the data points in Fig. 5 and the confidence bands give the error bars. It
is clear from Fig. 5 that the EGGRDED power density values are composition indepen-
dent but PEDEGGR values are composition dependent, with those propellants showing
PEDEGGR having a value of T = 0 (e.g. composition X in Fig. 4); there are no threshold
values. The ‘all propellants’ EGGRDED value is that from treating all the EGGRDED en-
hancement factors from the different compositions together as one group. This represents
a data set of thirty and the error bars are probably representative of the true variability in
EGGRDED, given that the effect is propellant composition independent.

DISCUSSION

That EGGRDED is propellant composition independent and PEDEGGR is composi-
tion dependent shows that it is correct to separate the two in ETC EGGR analysis. This
may be particularly important in high power, long duration discharge pulses where
EGGRDED and PEDEGGR effects may occur simultaneously. The question as to when
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PEDEGGR begins during the discharge cannot be readily answered until the mechanisms
involved in EGGRDED and PEDEGGR are better understood. There are a number of
possible mechanisms for each enhancement. One possibility is a change in the burn-rate
pressure index and/or coefficient; these may be due to changes in heat transfer to the grain
surface, sub-surface heating or gas phase chemical kinetics. Plasma heat transfer mecha-
nisms during the discharge are as yet poorly understood, and work is in hand at DERA to
try to rectify this. Other possibilities include erosive burning and propellant break-up and
other surface area increase mechanisms occurring during the discharge. Further, as yet
unexplored causes may exist. The authors have carried out some work, showing that vo-
lume changes due to plasma incompressibility proportional to the discharge power can
account for the EGGRDED effect, although this is sensitive to the accuracy of the plasma
equation of state used. This work suggested that, for these tests, incompressible plasma
occupies a volume of around 10 % of the chamber at peak power.

Indeed, it might well be shown that different types of plasma generator give rise to si-
milar effects but for different reasons. Solid JA2 propellant ETC experiments reported by
different groups have given varied results, with evidence of PEDEGGR reported by some
[9] and not by others [10]. Interesting phenomenon have been observed with interrupted
JA2 burn tests both with an opaque composition containing graphite [9] and a translucent
composition without graphite [11,12]. Fundamental research at DERA continues to ex-
plore the EGGR phenomenon with in-grain spectroscopy and the development of an opti-
cal fibre method to measure the burn-rate directly under closed chamber dynamic condi-
tions, as well as propellant chemical kinetics code development. 
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