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INTRODUCTION

The electrothermal-chemical (ETC) concept of ISL was defined in 1997 with the ob-
jective to improve the performance of large-calibre guns (120 mm and more), i.e. to incre-
ase the muzzle kinetic energy of the projectile [1]. Recently, the interest has extended to
mid-size calibres as well. All similar programs which were proposed in the past must con-
sider the constraints of limited combustion chamber volume, prespecified acceptable ma-
ximum gas pressure, restricted barrel length, critical erosion at higher gas temperature,
and low-density storage of electrical energy.

In order to keep the effort and cost low, we started our first experiments with a modi-
fied conventional 20-mm gun using “direct” plasma ignition of consolidated propellant
charges with loading densities up to 1.3 g/cm3 [2]. This “direct” ignition, where the
plasma produced by an exploding wire immediately interacts with a certain part of the
propellant surface, proved to be more efficient than the “indirect” ignition by a guided
plasma jet.

In the autumn 1999 we initiated the transfer of our promising findings with the small
gun to a 60-mm ETC gun. This is, in fact, not a simple problem, since it is not possible

Firing experiments were carried out with an electrothermal-chemical (ETC)
gun of calibre 60 mm using exploding wire plasma ignition initiated by the dis-
charge of a capacitor bank (initial voltage 10 kV; plasma energy less than 1% 
of chemical energy). Charges of consolidated propellant JA2 with loading den-
sities between 0.4 and 0.8 g/cm3 yielded kinetic energies of the projectile which
exceeded those achieved with conventional L1 by 20% to 25%, if compared at
equal values of the maximum gas pressure in the combustion chamber. This in-
crease is caused by the higher loading densities feasible with JA2. In order to
improve the performance further, but still to avoid dangerous peak pressures, a
variation of several parameters was studied: modification of the projectile, che-
mical treatment and composition of the propellant, amount of plasma energy,
and time controlled plasma injection.
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just to enlarge the total charge configuration. From a safety point of view, considering the
adverse environmental conditions on the proving ground, the high voltage of our power
supply is limited to a lower level than in a closed firing hall.

EXPERIMENTAL ARRANGEMENT

The weapon is operated on the firing range of ISL, where the electrical high power
supply is placed in a container near the gun and the controlling and recording units are in-
stalled in a bunker about 30 m away. The transmission of the measuring data is performed
by electro-optical converters and fibre-optic links.

ETC Gun of 60 mm Calibre

The breech of a conventional gun (barrel length 2.85 m) was modified to accept a
high-voltage feedthrough. A coaxial metal tube (outer diameter 22 mm) extends along the
axis of the combustion chamber (volume 1932 cm3), conducting the current pulse to three
exploding wires (length 50 mm) mounted at its front end near the projectile.

Pressure transducers are inserted in the combustion chamber close to the projectile
base, in the barrel near the initial position of the projectile, and at the muzzle. The maxi-
mum acceptable gas pressure in the combustion chamber is specified as plim = 550 MPa,
though the gun can withstand higher values.

A full-calibre steel cylinder with a polyethylene obturating band, supported by a thin
transition steel cone, is used as our “standard” projectile (mass mp = 3.0 kg).

High-Voltage Power Supply

The plasma produced by the exploding wires is initiated by the discharge of a capaci-
tor bank which is composed of several modules with thyristor switches and pulse forming
coil inductances. They may be triggered simultaneously or consecutively with a precise
time delay. The initial voltage of 10 kV results in 43 kJ of electrical energy stored per mo-
dule, up to 60% of which will typically be injected into the plasma within less than 2 ms.

During each firing, the variation of the plasma current IP(t) and of the voltage across
the electrodes UP(t) is recorded. From these signals the plasma properties like the resi-
stance and the injected power are calculated as a function of time afterwards, as well as
the total injected plasma energy EP, which in most cases remains below 1% of the chemi-
cal energy released by the combustion of the propellant.

Charge Configuration

We have carried out a large number of firings using our “standard” charge configura-
tion which consists of several propellant disks (outer diameter 90 mm, central bore 25
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mm, thickness 20 to 40 mm) with an average density of 1.4 g/cm3. These disks are conso-
lidated from grains of JA2 (equivalent: L 5460; 7 perforations; diameter 6.5 mm, length
9.8 mm, web 1.2 mm; heat of combustion Qex = 4.7 MJ/kg). A definite number of these
disks are mounted on the pulse-conducting tube mentioned above, so that the plasma igni-
tion is initiated inside the front part of the total charge, near the projectile. Variations of
this type of charge will be described later.  

RESULTS AND DISCUSSION

At the beginning of our investigation we compared the firing performance of our
“standard” charge configuration with a conventional reference charge. Afterwards we stu-
died several measures in order to mitigate high peak pressures and to avoid dangerous
pressure waves inside the combustion chamber.

Comparison of Consolidated Propellant with Conventional Charge

During a comprehensive firing series with the “standard” charge configuration the
loading density ∆ of the consolidated propellant JA2 was gradually increased from 0.4 up
to 0.8 g/cm3. Using one or two modules of the capacitor bank, the injected plasma energy
EP did not exceed 50 kJ.

The kinetic energy Ekin of the “standard” projectile is presented in Fig. 1 (circles) as a
function of the maximum gas pressure pmax in the combustion chamber. The values of ∆
are indicated as parameters in the diagram. Even with the highest loading density, which
yielded the peak pressure pmax = 750 MPa, the pressure history remained relatively
smooth and did not show marked pressure waves.

Additional tests with the very low loading density of only 0.15 g/cm3 helped to find an
empirical regression function of the form

E(kin) = a (pmax – p0)b (1)

With its three parameters a, b, and p0, it fits the measured data very well (linear cor-
relation coefficient R = 0.995) and yields the pressure of extrusion p0 ( 43.8 MPa (Fig. 1).
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Figure 1: Firing performance of  JA2 compared with L1.

It should be stressed that conventional ignition could not create sufficient combustion
of the consolidated charges. This had already been demonstrated in the case of the 20-mm
gun, even under more favourable conditions [2].

As a reference for comparison we used the conventional propellant L1 whose chemi-
cal composition is similar to JA2, but which has an enhanced heat of explosion Qex = 5.0
MJ/kg (equivalent: R 1250; “macaroni”-type grain; diameter 3.3 mm, length 200 mm,
web 1.3 mm). The firing results for loading densities between 0.45 and 0.55 g/cm3, as
shown in Fig. 1 (squares), did not depend on the kind of ignition (conventional or by
plasma). 

A regression curve of the same type as equation (1), but with only two free parameters
a and b, whereas p0 is fixed at the value found before, makes it evident that the kinetic
energies obtained with the consolidated JA2 generally exceed those achieved with L1 by
20% to 25% in the interesting region, if compared at equal values of pmax (see Fig. 1). Of
course, the improved performance of the consolidated JA2 is obtained at the expense of
higher amounts of propellant, i.e. increased loading densities.

A reasonable explanation of this finding may be deduced from Fig. 2 comparing two
exemplary pressure histories of JA2 and L1 with identical levels of pmax = 520 MPa. Ob-
viously, the pressure curve corresponding to JA2 is significantly broader, thus causing an
extended period of acceleration and higher muzzle velocity of the projectile.
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Figure 2: Pressure histories of “standard” JA2 and L1 with equal values of pmax.

Before we can increase the loading density further, we must take care that the peak
pressure does not exceed the safety threshold.

Modifications of the Projectile

A simple means of lowering the peak pressure pmax is to launch a lightweight projec-
tile. With the reference propellant L1 a projectile of mass mp = 1.55 kg gained so much
muzzle velocity v0 that its kinetic energy Ekin remained almost unchanged. Firings with
the “standard” charge JA2 in fact resulted in the desired reduction of pmax, but Ekin and,
consequently, the total efficiency ε (the ratio of Ekin and the total energy available) dimi-
nished severely. These effects are clearly demonstrated in Table 1 (columns 1 and 2). Be-
sides, even worse, the low mass could not avoid strong pressure waves arising at the flank
of the pressure curve. 

Table 1: Comparison of “standard” with lightweight and modified projectiles
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“Standard”
mass

Light
mass

“Standard”
band

Modified
band

mp 3.0 1.55 3.0 3.0 kg
∆ 0.79 0.79 0.72 0.73 g/cm3

pmax 750 490 700 550 MPa
v0 1217 1460 1165 1097 m/s
Ekin 2.22 1.65 2.04 1.81 MJ
ε 31.0 23.0 31.0 27.1 %



Another modification of the projectile proved to be more appropriate. The supporting
steel cone in front of the polyethylene obturating band was removed in order to reduce the
force of extrusion of the projectile into the bore. The results are illustrated in Fig. 3 and
listed in Table 1 (columns 3 and 4). Though the maximum pressure pmax decreases from
700 to 550 MPa, the total efficiency ε remains sufficiently high at about 27%.

Figure 3: Histories of plasma currents (left) and pressures (right) for “standard” {1} and
modified {2} projectile.

Variation of the Propellant Properties

A large part of our activities concerned variations of the propellant properties. Geome-
trical changes, such as different dimensions of the JA2 grains and 7 or 19 perforations, as
well as various thicknesses of the consolidated disks, did not influence the firing perfor-
mance significantly.

Another step was to study the combustion behaviour of charges made of surface
coated JA2 grains treated with different agents, as e.g. polyester. Or the whole surfaces of
the disks were coated. However, all these measures did not lead to the desired additional
broadening of the pressure curve, but they gave rise to several phenomena which have not
been fully understood yet.

One of the main effects with coated grains always was an obvious increase of the igni-
tion delay, as is demonstrated for an extreme delay of about 10 ms in Fig. 4. Here, conso-
lidated disks of the strongly phlegmatized propellant B7T98 (7 perforations; diameter 
5.5 mm, length 11.5 mm, web 0.95 mm; Qex reduced from 4.0 to 3.5 MJ/kg; average density
1.5 g/cm3) are compared with two examples of the “standard” charge JA2. A similar type
of B19T98 yielded good results in our 20-mm ETC gun [2].
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The data listed in Table 2 indicate that the firing performance, i.e. Ekin, and the total
efficiency ε of B7T98 are ranked between the corresponding values of JA2 with the same
loading density ∆ and JA2 with the same chemical energy Ec. 

Figure 4: Histories of plasma currents (left) and pressures (right) for “standard” propel-
lant JA2 {1}, {2}, and B7T98 {3}.

Table 2: Comparison of “standard” JA2 with phlegmatized B7T98 charge
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{1} {2} {3}
JA2

equal ∆
B7T98

phlegm.
JA2

equal Ec

∆ 0.65 0.66 0.49 g/cm3

Qex 4.7 3.5 4.7 MJ/kg
Ec 5.90 4.46 4.45 MJ

pmax 475 300 250 MPa
v0 1050 905 850 m/s
Ekin 1.65 1.23 1.08 MJ
ε 27.8 27.3 24.2 %



Controlled Plasma Ignition

A great advantage of plasma ignition is the possibility of easily adjusting the electrical
parameters which influence the initiation of the combustion process. For “standard” JA2
charges with a loading density ∆ = 0.7 g/cm3 Fig. 5 illustrates how the increasing amount
of injected plasma energy (namely EP = 22, 48, and 79 kJ), represented by the current
histories IP(t), makes the ignition delay decrease considerably, while the peak pressure
grows only moderately. This effect might be useful for application to the example of
B7T98 described in the previous chapter.

Figure 5: Histories of plasma currents (left) and pressures (right) for three plasma ener-
gies (1, 2, and 3 modules).

Our future investigations will concentrate on the optimization of the combustion de-
velopment by means of locally distributed ignition and consecutively injected plasma
energy with precise time delay.
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