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1. INTRODUCTION

Electro-thermal-chemical (ETC) initiation and combustion [1–7] could increase the
performance of guns as new propellant and high loading densities can be safely ignited
and burnt. The propellants ignition occurs by plasma introduced by a jet [1–4] or by an arc
from an exploding wire [4–8]. The input of electrical power and energy is measured, but
the energy reaching the propellant is unknown. The burning rates have indicated an aug-
mentation of the burning rate increase of the solid propellants [5,8–10]. The improved
performance could result from a burning rate increase by the plasma interaction or by
grain fragmentation. Recent results analysing extinguished grains indicated that both ap-
proaches could be realised. Burning rate formulas like Vieille’s law do not describe suffi-
ciently the effects found [11]. This paper reports plasma effects on ignition and the burn-
ing rate for JA2 comparing transparent and opaque versions.

Electro-thermal-chemical initiation and combustion can increase the perfor-
mance of guns substantially. This paper reports on investigations of burning
phenomena in the low pressure region for JA2, the effects of plasma interaction
on ignition and its influence on the burning rate comparing transparent and
opaque versions. The high intensity radiation of plasma arcs initiates burning
with short time delays in the µs-range and causes high conversion during exposure
also in a stable burning. Radiation can penetrate the propellant and fragment
the grains at absorbing structures which could be artificial or inherently pres-
ent. Simplified approaches can explain these effects at least on a qualitative
scale including dynamic effects.
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2. SIMPLIFIED APPROACH FOR RADIATION INTERACTION

The explanation of important phenomena of plasma interaction with solid propellants
will base on the assumption that the gasification dominates the ignition and burning of sol-
id energetic materials. A detailed outline of this approach is published elsewhere [11–15].
In the following, a radiative energy transfer QR is assumed in addition to the energy flux
from the flame by conduction Q0. In the case of an absorption of the total energy flux on
the propellant surface which pyrolyses at a temperature Tp, an approximation for the igni-
tion delay time tign can be found:

(1)

For a semi-transparent propellant with a unique absorption coefficient b, a more com-
plicated solution can be obtained [11-15]. If QR is constant the following relation for the
burning rate r can be derived where the heat conduction from the flame Q0 is supposed to
represent Vieille’s law. 

(2)

Eq (2) shows that conductive and radiative heat transfer affect the burning rate in the
same way. Eqs (1) and (2) enables to analyse the influence of physical and chemical pa-
rameters of solid propellants on ignition delay and linear burning rate. A least squares fit
of eq (2) gives the unknown Q0 (QR = 0) and Ts when fitting it to r-data measured at va-
rious To in a closed vessel [15]. For JA2 Ts was found to be close to 675 K [15], and Q0
increased from 6000 W/cm2 to 15000 W/cm2 at pressures from 70 MPa to 175 MPa. 

Figure 1: Transient burning rate of a solid propellant (physical data of RDX) on an exter-
nal heat flux absorbed at the surface.
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Ignition, burning rates and their pressure dependence were calculated also by the me-
thod of Zarko and Rychkov (for details see [16–18]). It was applied to the ignition and
combustion of nitromethane and a nitramine propellant to energy pulses from external
sources [14,16,19]. Fig. 1 and Fig. 2 show the response on heat flux absorbed at the surface
(Fig. 1) and in the interior of the propellant (Fig. 2).

The conversion rates of porous and foamed propellants are essentially above those ob-
tained by the linear burning of the compact energetic materials [20]. Using a highly sim-
plified approach of the heat flow equation a three-dimensional calculation can give the
conversion of the solid based on overall chemical kinetics and heat of reaction [21]. A de-
tailed description of the application to the plasma interaction with propellants is pub-
lished elswhere [22].

Figure 2: Transient burning rate of a solid propellant (physical data of RDX) on an exter-
nal heat flux absorbed in depth of the propellant. 

3. EXPERIMENTS, RESULTS AND DISCUSSION

Two types of JA2 were used: (1) the standard formulation containing carbon and (2) a
transparent version without carbon. The propellants were plates of 3 mm thickness and 
20 mm breadth. These plates were shaped to rings and put into a plastic tube (polyamide).
The plastic tube fitted into the closed vessel, the distance of the wire to the inner surface
of the propellant was 17 mm.

The propellants were investigated in two types of chambers: (1) A closed vessel was
used with a volume of 100 ml (most experiments at a loading density of 0.117 g/cm3, 
T = 293 K), enabling the registration of the pressure-time behaviour. The wire explosion
occurred in the axis of the bomb between electrodes at a distance of 40 mm. (2) The “opti-
cal” bomb with windows can withstand pressures up to 13 MPa. It was used for optical
and spectroscopic investigations (details see [22,23]). A 100 kJ EVA with maximal vol-
tages of 22 kV enabled ETC ignition and combustion whereas only stored energies up to
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10 kJ were used. The resistor was <10 mΩ and the inductivity was 20 µH. The plasma was
produced by a wire explosion igniting or pre-treating the propellant. Successive pulses
could occur which influence the stabilised burning mode. The voltage was measured at
the electrodes and the current by a Rogowsky Coil. The signal data were acquired with
sampling rates up to 100 MHz. In the case of propellant plates the burning rates were esti-
mated from the pressure maximum which was related to the thickness of the JA2 and the
first derivative of the pressure time curve ignoring the influence of the boundaries of the
propellant stripe. Some JA2 plates were pre-treated applying “open” conditions which
means that the same plastic tube was prepared with the propellant stripes outside the clo-
sed vessel and then the plasma arc initiated.

It was found that the burning rate of black and transparent JA2 are equal if they are not
ignited by a plasma or pre-treated by a plasma in an “open” experiment.

Figure 3: Comparison of plasma ignition of opaque and transparent JA2 and a pyrotech-
nic ignition.

Fig. 3 shows the pressure time curves of experiments where black JA2, transparent
JA2 subjected to a plasma arc of 2 kJ and JA2 initiated by 1 g B/KNO3. The ignition delay
indicated by an initial pressure rise is similar for both cases of plasma ignition and faster
than that of the conventional ignition. The pressure increase is similar for the black JA2
ignited by plasma and the JA2 ignited by black powder resulting in similar burning rates.
The burning rate of the solid material is accordingly higher. The ignition delay decreases
with increasing electrical energy fed to the arc. In addition, the pressure increase is stee-
per if more energy is used (Fig. 4). 
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Figure 4: Pressure-time-curves of the ignition of transparent JA2 at various energies.

For the plasma ignition of JA2 it is proposed: (1) black JA2: a short ignition time is
obtained, only at high radiant fluxes in depth effects could be observed; (2) transparent
JA2: a short ignition time is obtained, plasma radiation forms a porous structure in the in-
terior of the propellant causing a successive porous combustion characteristics; (3) igni-
tion delay times and burning rate enhancement follow qualitatively the theoretical approa-
ches described above. JA2 was pretreated by a plasma discharge after a wire explosion in
open experiments. Black JA2 cannot be pretreated because it ignites and burns under
these conditions. The pre-treated JA2 plates shows lens shaped crazes of a diameter of 2
mm orientated parallel to the rolling direction in production of the JA2 plates (see Fig. 5). 

Figure 5:  Pre-treated transparent JA2 by a plasma arc (0,8 kJ left and 1,5 kJ right).

The following experiments were performed with these pre-treated JA2 plates [11]: (1)
Observation of the burning behaviour by a video camera and measurement of the burning
rate in the optical bomb described above: The flame front is not linear but penetrates into
the crazes forming a broad flame zone still in the solid. The breadth increases whith the
pressure. The burning rate is higher than that of non-treated JA2 at 4 MPa and 7 MPa. (2)
A detailed analysis of the pressure-time curves obtained by 1 and 2 kJ plasma arc ignition
in the closed vessel results in a similar behaviour of the burning rate depending on pres-
sure. There is an increase of the apparent burning rate at 4 MPa and much stronger at 
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7 MPa above that of black JA2. (3) If ignited by 1 g B/KNO3 the pre-treated transparent
exhibits the same burning behaviour as if ignited untreated by a plasma arc. (4) Experiments
with burning interruption indicate that the burning takes place in the lens shaped crazes
and voids while the solid keeps its outer shape.

The effect of plasma pulses was investigated by exposing the propellants to one or
more arc discharges firstly initiated by the wire explosion. A step by step pressure incre-
ase occurs directly related to the electrical pulses. There is only a very short delay be-
tween the electrical pulses and the pressure increase. Assuming a reasonable energy trans-
fer (about 10 %) by plasma radiation delay times of less than 100 ns are expected by eq
(1) which is in accordance with the experimental results. The regression rate eq (2) of the
solid can occur independently of a chemical reaction of the material. In the case of black
JA2 which absorbs radiation predominantly on the surface, a result is shown in Fig. 6.
There are small time shifts between the pressure increase and the electrical pulses in the
order of 100 ns. Conversion rates by the electrical pulses are between 500 mm/s and 
2000 mm/s. Assuming a conversion of the propellant material according to eq (2) the
energy reaching the propellant surface is estimated to be between 75 kW/cm2 and 350
kW/cm2 which corresponds to an efficiency of the transfer of electrical energy of 15 to 20
%. The subsequent burning after the electrical pulses takes place according to the “nor-
mal” burning of JA2 with the “normal” burning rates. In cases of higher electrical pulses
(> 2 kJ) the transition to the “normal” burning was delayed. The absorption coefficient
also of black JA2 does not vanish completely, and, evidently, very strong radiation still
penetrates the propellants. Although strongly weakened, it could cause heat input, some
crazes and/or fragmentation as in the case of transparent JA2 and influence the conver-
sion.

The burning rate dependence of transparent JA2 on plasma treatment is qualitatively
described by the following model [22]: (1) The plasma pulse (as pre-treatment or in the
ignition phase) causes crazes and voids in the interior of the propellant which later act as
hot spot centres of burning. (2) If the initial pulse does not cause a pressure increase ab-
ove 2 MPa to 3 MPa then a “normal” linear burning begins including hot spots at the sur-
face. The burning rate does not exceed the burning rate of black JA2. (3) The pressure
gradient between the propellant interior and the closed volume drives hot reaction pro-
ducts into the porous structure which cause conversion and burning in the case that the
flame quenching distance or the flame stand-off distance is below the size of the pores.
(4) This is realised above 4 MPa and the burning occurs within a volume between the sur-
face and a depth where the hot gases can penetrate pores. At 4 MPa to 7 MPa the flame
stand-off distance decreased below 1 mm.
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Figure 6:  Electrical power, pressure and conversion rates of black JA2.

The hot spot mechanism mentioned above can describe this behaviour on a qualitative
scale. The experimental data of Fig. 5 indicate that the enhanced burning occurs immedia-
tely if 6 kJ electrical energy are applied. It occurs shortly after the end of the pulse on 2 kJ.
On 1 kJ a long delay takes place until reaching a pressure of 4 MPa to 7 MPa by normal
burning. Transparent JA2 can be directly pre-treated during the plasma ignition. Its bur-
ning characteristics is modified depending on the intensity of the plasma pulse. In gene-
rally, in transparent propellants photo absorbing centres or structures could serve to form
hot spots under high intensity radiation [11, 22]. 
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