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DISCUSSION ON EMISSION SPECTROSCOPY
MEASUREMENTS FROM A DENSE ELECTROTHERMAL
LAUNCHER PLASMA

Baoming Li and Hongzhi Li

Ballistic Research Laboratory, Nanjing University of Science & Technology
Nanjing 210094, P.R. China

A pulsed plasma jet originating from an electrothermal capillary source has
been observed by optical emission spectroscopy (OES) for years to determine
the plasma parameters, such as plasma temperature, electron density and the
species of the plasma and neutral gas. As opposed to most of the previous
works, we found it is very important that the spectroscopic constants are selec-
ted correctly when the arc plasmatemperature is measured by the method of the
plot of the Boltzmann function. In this paper, we have discussed the effects of
the spectroscopic constants, such as transition probability, A, the statistical
weight of the upper level, g,,, and the energy of the upper level, E,;, of copper li-
nes on cal culating temperature with a plot of the Boltzmann function in detail.
The results show that for a given spectrum a plot of the Boltzmann function
taken suitable spectroscopic constants yields a straight line that both the linearity
and the correlative coefficient are very good. Otherwise, it will lead to a great
error of the temperature measurement. Additional analyses include the utiliza-
tion of Saha-Eggert relationship for electron density determination. Further-
more, we measure the effects of geometric parameters of capillary and PFN
(Pulse Forming Network) parameters on temperature and electron density of
plasmain an el ectrothermal launcher.

INTRODUCTION

There is considerable current interest in the use of electrothermal-chemical (ETC)
propulsion concepts for improving the performance of conventional ballistic weapons. It
isimportant to measure the parameters of the capillary plasmasin order to understand and
accurately model the interactions of the palsmas with solid propellants. Optical Emision
Spectroscopy (OES) has been used for years to determine the plasma parameters, such as
its composition, temperature and electron density. A number of investigators have repor-
ted the measurements of the average plasma temperature by using the relative line ratio
method [1~3]. As opposed to most of the previous works, we found it is very important
that the spectroscopic consants are selected correctly when the arc plasmatemperatureis
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measuered by the method of the plot of the Boltzmann function. Otherwise, it will lead to
agreat error of the temperature measurement.

Emission resulting from transitions between several excited electronic states of neu-
tral atomic copper was observed in the spectral region between 500-600 mm. Therelative
intensitiesin these lines can be used to give a measure of the plasmatemperature using a
Boltzmann plot with slope —1/KT. The calculated results show that for a given spectrum a
plot of the Boltzmann function taken unsuitable spectroscopic constants yields a straight
line that both the linearity and the correlative coefficient become very bad. In this paper,
we recommend a set of spectroscopic constans of six atomic copper lineswhich it is suit-
ableto construct aplot of the Boltzmann function.

Additional analyses include the utilization of Saha-Eggert relationship for electron
density determination. Furthermore, the relation between the behavior of capillary dis-
charges and the electron density and temperature of the capillary plasmasisdiscussed.

EXPERIMENTAL PROGRAM

Catho
—’\d s Ly P
Optical Fiber

Ablative Capillary

R

PL

Zeiss medium-performance quartz spectrograph
S Anode
IC

Figure 1. Schematic diagram of the electrothermal plasmagenerator.

S-dlit, L1-Collimating lens, P-Quartz prism, PL-Photographic plate holder, L2-Camera
lens, Radial transmission system: Multimode fussed quartz optical fiber, C: Capacitor
Bank, S1: Closing Switch, S2: Crowbar Switch.

The optical system used in our work is shown in Fig. 1. It consits of a spectrograph
and radiation system. The spectrograph is a zeiss medium-performance quartz spectro-
graph. The spectral range of the spectrograph is from 200 to 600 nm. The light from
plasma source enters the spectrograph through multimode fussed quartz optical fiber.
Two kinds of plasma generators are used to conduct the measurements of plasma parame-
ters. A a.c. arc plasma generator is shown in Fig. 2, itsarc current is8 A, the breakdown
voltage of the arc gap, A2, is about 10 kV. Another electrotherma plasma generator is
shown in Fig 1. This generator produces high density (>10%> m3), low temperature
(14 eV) plasmas by the ablation of the capillary liner.
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Figure 2. Schematic circuit diagram of the a.c. arc generator with Teslatransformer trans-
mission of theignition current.

Thecircuit I: arc plasma current circuit (or work current). Thecircuit I1: Tr — Transformer
of 3kV; Te—TeslaTransformer of 10 kV.

DETERMINATION OF PLASMA TEMPERATURE

A Spectroscopic Measurements

From the theory of atomic emission spectroscopy, the plasmatemperature generally is
estimated by the relative emission intensities of spectral lines. The relative intensities of
the spectral linesare used in the following equation

ln(i) =C- E,
Ag, kT

Wherel, A\, A, gy ,Ey k and T are therelative intensity, wavelength, the transition pro-
bability, the statistical weight of the upper level, the energy of the upper level, Boltz-
mann’s constant and temperature. The gy, A and E; can be obtained from the handbooks
of the spectroscopic constants, chemistry and physics.

For measuring precisely temperature of the arc plasma, anumber of spectral lines for
ameasured element are used. For a given spectrum aplot of the Boltzmann function, the
logarithmic term, versus E,, yields astraight line whose slope, S, isequal to —1/KT, assum-
ing a Boltzmann distribution in the populations. Thus we can obtain the arc plasmatem-
peraturefrom the slope, S, of the straight line. We write

1
T S 2

The copper lines and their spectroscopic constants used in thiswork arelisted in Table
1. The statistical weight, gy, and transition probability, A, and energy level transition are
get from Corliss and Bozmanl4l.

@
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Table 1. Transition probabilitiesand energy levelsfor the copper linesfrom [4]

Spectrum | Wavelengt | Energy level transition | Energy of the upper level 2.A
hnm K K eV 10%sec
Cul 510.55 11203-30784 30784 2.65 0.051
Cul 515.32 30535-49935 49935 430 4.7
Cul 521.82 30784-49942 49942 430 5.8
Cul 529.25 43514-62403 62403 5.38 3.2
Cul 570.02 13245-30784 30784 2.65 0.014
Cul 578.21 13245-30535 30535 2.63 0.054
Table 2. Therelativeintensities of copper linesfor the arc plasma

Cul(nm) 510.55 515.32 521.82 529.25 570.02 578.21

Lnl 2.12 2.76 433 1.75 1.75 2.60

Measured relative intensities of copper lines for the arc plasma shown in Fig. 2 are
listedinTable 2.

The Boltzmann plot for temperature measurement of the arc plasma is shown in
Fig. 3. Thismethod gave Boltzmann temperature T=5946.9 K.

Thelinear equationis

IN[Al/(guA)]=—1.951E,, +16.886

The correlative coefficient y =—0.965.

The experiment obtains very good linear relationship between In[ Al/(g, A)] and Ey.

The method of measuring temperature gives arelative standard deviation of 1.7%.

Hankins et al[1] had used the spectroscopic constants listed in Table 3 taken from [5]
for temperature diagnostics of adense electrothermal plasmaby Boltzmann plot using the
relative intensities of copper lines. When we utilize the spectroscopic constants listed in
Table 3to processthe experimental datalisted in Table 2, the Boltzmann plot for tempera-
ture measurement isshownin Fig 4.

Table 3. Transition probabilities and energies of upper levelsfor the copper linesfrom [5]

Spectrum | Wavelength Energy of upper level 2 A <A
nm eV 10%/sec 10%/sec
Cul 510.55 3.82 4 0.02 0.08
Cul 515.32 6.19 4 0.60 2.40
Cul 521.82 6.19 6 0.75 4.50
Cul 529.25 7.74 4 0.109 0.436
Cul 570.02 3.82 4 0.0024 0.0096
Cul 578.21 3.79 2 0.0165 0.033
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Linear equationis
In[Al/(gyA)]=—1.281E, +16.396

The correlative coefficient y=-0.716.
Thearc plasmatemperature measured T=9059.2 K.

13 16
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Figure 4. Boltzmann plot for temperature
measurement using optical fiber
transmission and spectroscopic
constants get from [5].

Figure 3. Boltzmann plot for temperature
measurement using optical fiber
transmission and spectroscopic
constants get from [4].

Above experimental results show: (1) We al know that the maximum temperature for
thiskind of the a.c. arc plasma shown in Fig. 1 does not exceed 6500 KI6]. So measured
temperature 9059.2 K by the spectroscopic constants listed in [5] is incorrect; (2) For a
given spectrum a plot of the Boltzmann function taken spectroscopic constants from[5],
thelogarithmic term, versus E, yields a straight line that both the linear and the correlative
coefficient are very bad. It leadsto agreat error of the temperature measurement.

Therefore, from the experimentsit is unsuitabl e that the spectroscopic constants taken
from [5] for copper lines are used for processing the plot of the Boltzmann function to
measure the temperature of the arc plasma. We recommend that it is better for the spectro-
scopic constants for copper lines listed in [4] to measure Boltzmann temperature of the
arc plasma.

Listedin Table 4 are thelogarithmic term In[Al/(g,A)] of copper linesfor the capillary
plasma experiment shown in Fig. 1. Fig. 5 shows the waveform of the discharge current
and the voltage across the capillary. The capillary sample was polyethylene and the input
energy was 4.5 kJ.

Table 4. The relative intensities of copper lines for the capillary plasma at a discharge
energy of 4.5kJ

570.00
13.12

578.21
12.09

521.82 529.25
9.38 9.11

Cul (nm)
In[ A 1/(g,A)]

510.55
13.06

515.32
9.29

The Boltzmann plot for temperature measurement of the plasmacapillary isshownin
Fig. 6.
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Figure 5. Waveforms of the discharge Figure 6. Boltzmann plot for temperature
current and voltage acrossthe capillary. measurement of the capillary plasma.

Thelinear equationis
In[Al/(g A)]=—0.57E, +9.99

Thetemperature measured T=20359.4 K.
The correlative coefficient y=—0.94.

B Results and Discussion

ShowninFig. 7 are the calculated temperatures by OES for the capillary plasmain the
source. It isinteresting to notein Fig. 7 that for agiven capillary dimension the calculated
temperatures increase with the input energy over the 4.5 to 10 kJ range with the tempera-
turesranging from 2 €V to 2.22 eV. However, at the higher input energies, the calculated
temperature seems little change with the increase of the input energy. This can be attribu-
ted to the fact that the lines change from emission to absorption for spectra.

One of the experimental features of this kind of capillary discharge, such as the pre-
sence of maximum plasmatemperature with respect to the length to diameter ratio, is ob-
served. Also plotted are average temperature calculations from our numerical codel6l.
These results are shown in Fig. 8. There is same trend between two methods with the in-
crease of the length to diameter. But the calculated temperature from the numerical code
based on the measured source potentical and arc current is greater than the value from
Boltzmann plot. Thistreatment impliesthat the emitting material isnot well inlocal ther-
modynamic equilibrium with the surrounding plasma and that the plasma tempereature
hasrelatively change over pulse lengths of 600 psin the source. Shownin Fig. 9 isthe nu-
merical results of temperature and electron density at the position of the exit bore.
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DETERMINATION OF ELECTRON DENSITY

Therelationship of Saha-Eggert isauseful technique for determing the electron densi-
tieswithin aplasma. Therelativeintensities of the neutral atomic linesand singly charged
ionic lines are used according to the relationship.

I°(ng* 42, E"+AE -E°-E
Fogar T gy

Where (9, *) represents the neutral atom, singly charged ion, respectively, 19(r) is the
relative emission intensities of the atomic lines at the radiusr within aplasma, 17(r) isthe
relative emission intensity of the singly charged ionic linesat the radius r within a plasma,
E* isthe energy of the excited electronic states of singly charged ion, EQ is the energy of
the excited electronic states of neutral atom, E7 isthefirst ionization potential, AE1 repre-
sents the lowering in the ionization potential that results from nonideal plasma effects,
T(r) isthe excited temperature at the radius r within a plasma, k is Boltzmann's constant.
The electron density is estimated by using the transitions from iron atomic lines (252,285
nm) and singly charged ionic lines (258,588 nm).

N,(r)=4.83x10" 3)
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Shown in Fig. 10 isthe dependence of the calculated electron density by the Saha-Eg-

gert relationship on the plasmatemperature. The results show that the electron density has
a small dependence on the plasma temperature. Therefore, there is a well agreement be-
tween the value of theoretical cal culation and the diagnostic value.
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