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MEASUREMENTS OF MUZZLE BRAKE EFFECTIVENESS
E. Schmidt

U.S Army Research Laboratory, Aberdeen Proving Ground, MD 21005-5066, USA

The paper examines the analytic and theoretical work done on muzzle brakes
over the past twenty years. The nature of the flow over the devices is consid-
ered and itsimplications on brake performance discussed. Correlations are pre-
sented between brake efficiency, blast overpressure, muzzleflash, and accuracy.

INTRODUCTION

Muzzle brakes, Fig. 1, are devices that act to recover momentum from the exhausting
gun propellant gases. Interest in optimizing the performance of brakes has come and gone
over the years. During World War 11, considerable research was undertaken. As weapon
calibersincreased to counter more powerful tankswith heavier armor, recoil became ade-
sign problem. Germany1.2 demonstrated an understanding of the muzzle gasdynamics
and developed an amazing array of different brake variants, some of which were placed
into production. In the United States, a major concern3 centered on brake-like devices
applied as blast deflectors. The goal was to reduce obscuration caused by debrislofted in
the muzzle exhaust. After the war interest waned until in the seventies, when attack heli-
copters were fielded with muzzle brake equipped cannon. Interest centered4.5 on blast
overpressure on the aircraft surface particularly sections housing electronic components.
In the eighties, blasts-8 in the crew stations of towed howitzers became a concern. Pre-
sently, there isinterest in lightweight fighting vehicles mounting high performance can-
non. Recoil mitigation is a major consideration and provides a need to revisit previous
efforts. This paper will give an overview of work to define the properties of open muzzle
brakes, Fig.1, and their impact on the overall functionality of the weapon system.

231



Launch Dynamic & Propulsion

Figure 1. Open baffle muzzle brake.

The flow from guns has been studied extensively9. The high pressure propellant gases
drive into the atmosphere displacing the surrounding air to form a strong blast wave
which decays as it propagates away from the weapon. The propellant gas flow has the
structure of a highly underexpanded supersonic jet. A property of the jet structure is that
within the supersonic core, i.e., theregion internal to the lateral shocks and Mach disc, the
flow is quasi-steady. This means that the highly transient events occurring in the blast
layer do not propagate beyond the jet shocks and property variations within the core are
governed by the slower process of gun tube blow down. Since the muzzle brake functions
largely within this coreregion, itstreatment issimplified.

Oswatitschl and Smith10 both took advantage of the quasi-steady nature of the core
flow to perform experiments on muzzle brake simulators immersed in steady jet flow.
They define abrake efficiency factor

B=(Two—Tw)/Two 1)

where Ty is the thrust with the brake installed and Ty is the thrust without the brake
installed. Since these were steady flow experiments, no projectile was launched.

Using what isin essence a ballistic pendulum, Paterll measured muzzle brake perfor-
mance on an actual cannon. For this transient event, the brake efficiency factor was defi-
ned as

B = (lwo—Iw)/(lwo—MpVp) ()

where |y isthe impulse imparted to the free recoil device with the brake installed, Iy is
the impulse without the brake, and mpvp isthe muzzle momentum of the projectile. Thus,
the term in the denominator isthe total momentum available from the propellant gases. If
the highly transient initial phase and the low momentum late time collapse of the core are
neglected, Eq. (1) and (2) are essentially the same. This is the definition of brake
efficiency used for the remainder of this paper. Subsequent sectionswill examinethe vari-
ation of efficiency with brake geometry and consider the impact of efficiency on other
brake properties, such asblast.
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RECOIL ATTENUATION

Baur and Schmidté used afree recoil device of Pater’s design to measure the recoil at-
tenuation characteristics of a variety of brake designs mounted on a 20 mm cannon. To
permit rapid changes in geometry, axially symmetric configurations were employed
where baffles were connected to the muzzle by a set of threaded rods. It was assumed that
interference of the rods with the flow was small. Flat and angled baffles were examined,
both singly and in pairs. To test the applicability of the axisymmetric data to an actual
muzzle brakes, three-dimensional models were built for two of the designs (simulating
the brakes on the M109 and M 198 howitzers). Data were taken of the brake efficiency
and blast overpressure. In addition, the muzzle flow field was observed using spark sha-
dowgraphs.

For a single baffle moved along the line of fire, the brake efficiency first grows and
then decays, Fig. 2. This behavior was observed and explained by Smith10. Near the
muzzle, the lateral extent of the core flow is small and much of the momentum flux sim-
ply passes through the projectile hole in the baffle. As the device moves away from the
muzzle, the lateral extent of the jet grows and more of the baffleis effectivein turning the
flow, thus recovering momentum. Eventually, the efficiency decays asthe lateral extent of
the jet becomes sufficiently large for momentum flux to pass around the outer edge of the
baffle. The location of the peaké changes with brake geometry. For larger baffle geome-
tries, the maximais reached further from the muzzle. However, for all cases observed the
growth and decay of efficiency was seen.
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Figure 2. Variation in efficiency of single, axisymmetric baffle asit is moved away from
themuzzle.

When a second baffle is added, some interesting behavior is observed, Fig. 3. Thefa-
mily of curves represents the variation of efficiency as the second baffle is moved away
from the first. The changes are overlaid on data from Fig. 2. For example with the first
baffleat z/D = 0.5, thetotal efficiency (for the two baffles) grows as the second baffle mo-
ves downstream. A maximum is reached when the second baffleisat z/D = 2.5. It isnoted
that the maximum double baffle efficiency does not follow from the optimal location for
the single baffle; rather, it is attained when thefirst baffle z/D = 1.0 and the second baffle
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z/D = 3.5. The gainin performance for the second baffle istypically lower than that of the
first (except for z/D = 0.5 where flow through the projectile hole is largely undisturbed)
and occurs at a greater offset for the second baffle relative to the first than for the first re-
lative to the muzzle. This behavior was noted by Oswatitschl and ascribed to the loss of
stagnation pressure as the flow is processed through the strong shocks developed by the

first baffle.
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Figure 3. Variation of efficiency of two axisymmetric baffles as second baffle is moved
relativeto thefirst.

A related behavior can be observed as the weapon exit conditions change. A typical ar-
tillery pieceisfired over aset of muzzle velocities (zones of fire) in order to provide accu-
rate coverage of desired ranges. In firing the model M 109 and M 198 brakes, it was obser-
ved that as muzzle velocity changed, so did the brake efficiency, Fig. 4.
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Figure 4. Variation of efficiency of model scale three-dimensional brakes with muzzle
velocity.

The muzzle conditions at shot exit are presented in Table 1. The pressure is that after
in-bore expansion to sonic conditions following projectile exit. As the muzzle velocity
(and pressure) increase, the efficiency of both brakes change. However, the efficiency of
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the M109 model brake increases while that of the M198 decreases. The cause of this be-
havior is related to the geometry of the brakes relative to the flowfield. As muzzle pres-
sure increases, the longitudinal and lateral extent of the supersonic core grow. Photo-
graphs* show the M 198 baffle to be fully immersed in the supersonic core before the
460 m/s case. At higher velocities, the core grows past the baffle. When this occurs,
momentum flux passes beyond the outer edge of the baffle and efficiency drops. For the
M109 baffle, adifferent behavior is observed. Thisisarelatively large baffle and is swept
back toward the muzzle. As velocity increases, the baffle becomes more fully immersed
in the supersonic core, interdicting more of the momentum flux. By 615 m/s, the core
moves to the edge of the baffle and it would be expected that the efficiency would begin
to decrease. This was not observed in the data and is thought to be associated with the
processes occurring on the second baffle of the double baffle brake. Obviously, theflow is
not as simple as described in this paragraph; however, it is felt that the explanations
reflect the basic phenomenology of the process.

Vp (m/s) 280 463 615 775 1050
T (K) 875 933 1052 1320 1705
P /P 14 45 101 189 287

Table1l. Muzzleexit conditions (20 mm cannon)

BLAST OVERPRESSURE AND FLASH

In diverting the propellant gases to recover momentum, the muzzle brake altersthe di-
rectional nature of energy deposition and through thisthe blast overpressurefield. Theva
riation in blast strength with angle away along a constant radius arcé is shown in Fig. 5.
For the bare muzzle, the blast is quite strong ahead of the gun, i.e., the axis along which
the gases exhaust. With each of the brakes, the peak pressure movestoward therear of the
gun reflecting both the brake efficiency and the baffle sweep angles. This property of
muzzle brakesiswell known by gun crews stationed behind the weapon.
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Figure 5. Variation in pesak blast overpressure with angle relative to the line of fire for the
bare muzzle and M 198 and M 109 three-dimensional brakes.
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From the 20 mm data for the set of muzzle brakes tested, Baur and Schmidt define a
correlation between overpressure with and without abrakein place

(Pw-P) P = [Puwo-P)/ PJ[1 + B(0.8 —1.5c0s8] €)

where 8 isthe angle from the line of fire (zero isforward), pyw, Pwo are the peak pressures
behind the blast wave, and po, is the ambient pressure. This expression is reasonably
accurate for directions fore and aft of the line of fire; however, lateraly, it does not accu-
rately predict the blast field. In part thisis dueto afailure to account for the details of baf-
fle geometry, both in terms of baffle sweep angle and the three-dimensional nature of real
brakes (i.e., with upper and lower attachment plates). Fortuitously, in the vicinity of the
crew both the axially symmetric and three-dimensional overpressures converge.

There are some techniques that can be used to reduce the blast overpressure while still
maintaining brake efficiency. For multi-baffle brakes, it has been observeds that magni-
tude of blast is dominated by the characteristics of the first baffle; thus, it is of interest to
examine the blast overpressure variation with position of the first baffle, Fig. 6. The plot
shows the variation of efficiency and overpressure, both normalized to their respective
peak values, as the baffle position is changed. The overpressure datais taken on the 150°
ray at aradial separation of r/D = 30 from the muzzle. It is seen that the overpressure in-
creases along with the brake efficiency, but peaks at z/D = 1 while efficiency peaks at z/D
=1.5. At thelocation of maximum brake efficiency, the overpressure has dropped by 20%
relative to its peak value. This behavior was also observed for other brake designs. The
baffle tested was the same as that used in Fig. 3 and 4. Since the blast overpressure with
two baffles was only dightly greater than with the single baffle case, it can be hypothesi-
zed that the best configuration would be one where the first baffle is located close to the
muzzle (e.g., Z/D = 0.5, Fig. 4) and the second baffle placed near the peak efficiency point
(e.g., /D = 2.5). This provides asmaller blast overpressure in the crew area, a high level
of efficiency, and arelatively compact device.
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Figure 6. Variation of efficiency and peak overpressure (both normalized to local ma-
xima) along 150° ray with location for asingle axisymmetric baffle.
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In addition to increasing overpressure behind the weapon, the presence of a muzzle
brake can act to increase the probability of flash. It is well known?12 if there is a proper
mixture between propellant gas and air with sufficiently high temperature over areason-
able induction period, ignition may take place. The luminous region produced by such
combustion has significant brightness and extent. It is called secondary flash. For high
performance tank guns, secondary flash almost always occurs. Flash suppressants such as
potassium sulfate are employed to reduce the probability of flash in artillery. However,
the use of muzzle brakes can have the opposite effect. The baffle surfaces of muzzle bra-
kes cause strong shock waves to form in the exhaust flow. Passage through a series of
internal shocks followed by afinal Mach disc can significantly heat the propellant gases.
A highly idealized approximation of this flow shows8 the influence of the shock heating,
Fig. 9. The plot shows the mixture temperature versus the mixture ratio where r = 0 is
pure propellant gas and r = 1 is pure air. The double baffle brake significantly raises the
mixture temperature when compared to the bare muzzle case. The dashed lines show em-
pirical ignition criterial3 for different percentages of flash suppressant. In fact, tests sho-
wed that the howitzer in question did flash. While bare muzzle tests were not conducted
to show an absence of flash, the model was applied to each zone of fire with the brake in
place and produced reasonabl e agreement with data.
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Figure 7. Effect of amuzzle brake on air/propellant gas mixture temperature (horizontal
lines show ignition threshold for different percentages of flash suppressant).

CONCLUSIONS

The use of muzzle brakes may be necessary to reduce recoil of high performance can-
non on future lightweight fighting vehicles. There is a significant body of experimental
data describing the muzzl e brake gasdynamics which points out some of the pitfalls asso-
ciated attempts to optimization of brake performance. While not discussed in this paper,
there have been a number of numerical studies of muzzle flow both axially symmetricl4
and fully three-dimensional15. The work of Carofano uses the most advanced numerical
scheme and producesimpressive results. Given the advancesin these techniques, it would
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be worth applying modern computational fluid dynamics to predict the complete proper-
ties associated with any new family of muzzle brakes being considered. Such an approach
would greatly improve the understanding of the flow internal and external to the devices
and would aid in optimizing their performance.
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