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Over twenty years, achieving super-high velocities in railgun-assisted throwing of
macrobodies in apparatus operating in the plasma armature mode still remains a challeng-
ing problem. The velocity 5.9 km/sec of a polycarbonate dielectric body of mass 2.5 g
achieved by 1978 [1] still characterizes the level of velocities reproducibly obtainable in
the present-day experiments [2–4]. The importance of works in the field of electromagne-
tic railgun-assisted acceleration of macroparticles is related, first of all, to the fact that all
present-day gasdynamic methods of high-velocity throwing of bodies (employing light-
gas guns, explosives, gas-cumulative jets, generators of intense shock waves, etc. [5, 6])
either have a restricting factor, the velocity of sound in the working medium, or face se-
rious difficulties in detaching the accelerated body from the pushing stream. For bodies
weighing several grams, the researchers failed to overcome the 10–12 km/sec threshold
of velocity.

Simultaneously, in electrodynamic methods, among which railguns have gained the
widest utility, there are no fundamental restrictions on the velocity and mass of projecti-
les. However, there are a number of detrimental factors that, accompanying acceleration,
greatly hamper realization of wide potentialities of the technique. The operation of a rail-
gun working in the plasma armature (PA) mode consists in the following (Fig. 1). A di-
electric body is placed in the gap between current-carrying electrodes-rails, and a PA is

The use of a railgun operating in the plasma armature mode for achieving
hypersonic (greater than 10 km/sec) velocities of macrobodies is considered.
The main physical models describing the operation of such an apparatus and
factors imposing restrictions on its characteristics are outlined. Based on a cas-
cade scheme of throwing plates (shells) with the help of explosives, a multi-
stage method for accelerating macrobodies in railguns with a pinched plasma
armature is proposed. The method allows one to compact the plasma armature,
partly avoid adverse effects of electrode erosion and loss of stability, and opti-
mize the shock-wave interaction between the plasma and the projectile. Experi-
ments are performed on the two-stage throwing of bodies of mass 1 g with
pinching the plasma armature with a striker speeded up at the first acceleration
stage. An increase in the velocity by 75% is obtained.
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generated at its rear boundary (by injecting
a plasma bunch or with the help of its self-
formation after explosion of a metal foil
several tens of micrometers in thickness).
Between the electrodes, a potential differ-
ence is applied, which, after the initiation
of the PA, results in closing the discharge
circuit, and the PA starts accelerating under

the action of the pondermotive force F=I×B, pushing the body.
J.V. Parker proposed a physical model that describes phenomena occurring in the rail-

gun. This model crowns a several-year period of studies aimed at obtaining hypersonic
velocities of throwing [7]. The essence of this model consists in the following (Fig. 2). In-
tense erosion of channel walls leads to involvement of a parasitic mass into the PA and,
owing to the viscous friction and inertia, gives rise to a wake with high electric conducti-

vity that shunts the main accelerating dis-
charge, thus causing the current split; as a
result, the pondermotive force decreases
and an additional ablation of the electrode
material takes place. For this reason, ero-
sion of wall material was believed to be the
main negative factor affecting the opera-
tion of the apparatus under consideration.

With due regard for available know-
ledge, the studies aimed at diminishing the
adverse effect of wall erosion were concen-
trated around the following lines. 

– Synthesis of new erosion-resistant materials;
– Diminution of thermal loads on the channel:

– preliminary acceleration of the projectile;
– applying an additional magnetic field;
– optimization of the electric-current path;
– reduction of the voltage drop across the discharge gap;
– suppression of the electric conductivity in the PA wake.
However, the works carried out along these lines also failed to overcome the velocity

barrier.
In their experimental and theoretical

studies of the structure and dynamics of PA
during acceleration of macroparticles in a
railgun channel, B.E. Ostashev, E.F. Lebe-
dev and V.E. Fortov [8] advanced the fol-
lowing model for the development of a
plasma anchor in a railgun. An MHD-anal-
ysis of stability of the conducting wake be-
hind a plasma-dynamic discharge (PDD)
showed that the latter is absolutely unstable
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Figure 1. A railgun working in the PA mode.
1 – plasma armature; 2 – projectile.

Figure 2. Development of a plasma armature
after Parker. 1 – shunting discharge; 2 –
wake; 3 – delocalized rear part of the plasma
armature; 4 – the main discharge; 5 – projec-
tile.

Figure 3. Schematic of the discharge model
with a quasi-steady plasma flow. 1 – plasma-
dynamic discharge; 2 – buffer zone; 3 – pro-
jectile.



with respect to occurrence of parasitic shunting currents in it. The PDD can exist in the
current-shell mode (the properties of such a PDD resemble the properties of an H-pinched
discharge) only for rather a short period. Surprisingly, to improve the stability of such a
discharge, it is required to intensify erosion. It is a discharge with a quasi-steady plasma
flow that constitutes a stable form (Fig. 3). 

The physical model for a railgun working in a typical operating mode can be descri-
bed as follows (see Figs. 1 and 3). A PDD 1 moves predominantly under the action of the
pondermotive force (Fig. 1). Owing to instability of erosive wake and to the tendency to
the transition from the current-shell mode to the mode with a quasi-steady plasma flow
demonstrated by PDD, the PDD gradually shifts upstream the flow of erosion products
directed toward the projectile (Fig. 3). The flux dm/dt 2 entrained into the PDD and acce-
lerated there by the pondermotive force carries away some momentum and decelerates
the discharge. On the other hand, this flux is decelerated on the rear side of the projectile
surface 3 and gives rise to a gasdynamic force accelerating the body. In contrast to the
Parker model, the gas of erosion products thus accelerated is not accumulated immedia-
tely in the PDD but, instead, gets set in motion by the discharge. Hence, the PDD is not a
“current armature”: that immediately accelerates the projectile but, instead, is a factor that
forms a pushing “piston”. In this case, the PDD is separated from the projectile by a buf-
fer zone free of any current, whereas it is the gas decelerated by the body surface that
forms the “piston”. It is the loss of momentum for accelerating the flow that restricts the
velocities of PDD and projectile. The authors of [8] consider the problem of complete eli-
mination of factors destabilizing the state of PDD that cannot be resolved.

Particular attention of researchers was given to development of multi-stage schemes
of acceleration, for these schemes hold most promise in solving the problem of interest.
The following measures were undertaken to further develop the technique.
– a longitudinal sectioning of electrodes [7]; 
– preliminary acceleration of the projectile with the help of a gasdynamic scheme follo-

wed by its entry into the railgun channel (a three-stage gun, in the case of a two-stage
light-gas gun) [9]; 

– further development of the previous scheme with involvement of a duet body to com-
pact the PA during its initiation in the channel (Fig. 4) [10]; 

– use of a gas-cumulative jet additionally accelerating the projectile [11]; 
– acceleration at the first stage according to the ordinary scheme of a railgun with a

breech current input and additional acceleration at the second stage with muzzle cur-
rent input, which should, in the opinion of the authors, to prevent the PA from deloca-
lization [12]; 

– to two-stage schemes, a scheme with
high-velocity injection of a weakly con-
ducting gas into the wake of a flying
projectile can be classed [13].
Nevertheless, to the best of our know-

ledge, no success in reliable breaking
through the 6–7-km/sec threshold of velo-
city for bodies weighing several grams was
achieved.
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Figure 4. Duet body. 1 – striker; 2 – closing
plug; 3 – PA initiator; 4 – projectile.



Gasdynamic schemes of multi-stage ac-
celeration of macrobodies were success-
fully used in ballistic experiments for a
long time. In late seventies, two of the pre-
sent authors (Fomin V.M. and Sapozhnikov
G.A.) proposed a scheme of two-stage ac-
celeration of plates and shells separated by
gaps with imtermediate layers of an explo-
sive [14]. The main mechanism of obtain-
ing high velocities in this scheme consists

in a pulsed interaction of plates (shells) with a decreasing mass (and increasing velocity,
as follows from the law of conservation of momentum) and in throwing of plates in cas-
cades by explosion products obtained in the regime of strong detonation [15]. Using the
same mechanisms, the authors of [14], however, paid primary attention to searching ef-
fective ways for “transportation” of explosive energy from the charge periphery to plate
(shell) to be accelerated with the help of intermediate agents, other plates (shells). It is
well known that for large values of the loading factor  η = mexp / mp >> 5, where mexp and
mp are the masses of the charge and projectile, respectively, the efficiency of the energy
transfer toward the body (a plate or shell) is rather low. The latter follows from the fact
that the energy released by remote parts of the charge almost does not enter its active part.
To transfer this energy to the projectile, it was proposed to deliberately divide the charge
into several layers and attach an intermediate plate (stage) to each of them (Fig. 5). Using
this method, the authors enhanced the energy transfer from peripheral parts of the explo-
sive to the projectile and improved the working characteristics of explosive-based accel-
erating systems [15, 16].

Figure 6. Scheme of the experiment and cross section of the channel. 1 – first stage; 
2 – insert; 3 – second stage; 4 – insulators; 5  – electrodes; 6 – anvil; 7 – cut-wire targets;
C 9-8 digital oscilloscopes; black squares – magnetic probes; all dimensions are  in mm.
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Figure 5. Two-stage charge-assisted accele-
ration scheme. 1 – explosive; 2 – striker; 3 –
projectile.



Here, we propose using the above men-
tioned layered systems to magnetoplasma
acceleration of bodies in railguns. The key
element of such a layered system has the
form “body-plasma-body”. A distinctive
feature of this system is energy addition to
an intermediate plasma layer, which is dis-
tributed in time and actually controllable.
In addition, “pinching” of the PA between
the striker and the projectile allows one to
compact the PA, partially eliminate detri-
mental effects of electrode erosion and loss
of stability of the PA (since it successfully
solves the problem of the conducting wake
and buffer zone), optimize the shock-wave
interaction between the plasma and the pro-
jectile and, finally, substantially increase
the body velocity.

This system was experimentally studied
on a two-stage railgun with the total length
of the acceleration path 0.7 m and a capaci-
tive source of 0.8 MJ. The capacities of the
capacitor bank of the first and second sec-
tions were 0.036 and 0.0085 F, respecti-
vely. The specific (per unit length) induc-
tance was 0.42 µH/m. The active length of
the copper electrodes of the second section
was 230 mm. The insulators were made of
fiber-glass plastic. Both stages (sections)
were electrically isolated from each other
with a 195-mm-long dielectric insert made
of caprolon. Both the striker and the projec-
tile were made of lexan. The plasma arma-
ture was initiated by an exploding 30 µm-
thick copper foil. The scheme of the
experimental setup is shown in Fig. 6. The
striker was accelerated at the first stage to a
velocity of 1.7 km/sec and interacted, via
the PA, with the projectile in the second

stage of the accelerator (Fig. 7C). The expected time at which the striker started interact-
ing with the PA was chosen on the ascending branch of the current in the second stage. In
the course of experiments, the following physical quantities were measured: currents I
and voltages U at the input and output of both stages, indications of magnetic probes dI/dt
installed inside the channel, and velocity V of the projectile. Special tests in a shortened
channel without the second section were carried out to determine the striker velocity; this
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Figure 7. Organization of the rear boundary
of the plasma armature in the second stage of
the accelerator: (A) – “plasma-body”, free
boundary; (B) – “plasma-body”, rigid boun-
dary; (C) – “body-plasma-body”, moving
boundary;  1 – striker, 2 – PA (the arrow
shows the direction of the electric current), 3
– projectile.

Figure 8. Location of the plasma armature as
deduced from indications of magnet probes.



velocity was additionally measured by magnetic probes [17] spaced 30 mm apart and in-
stalled inside the channel at the exit from the first stage. The magnetic probes were small
disclosed Rogowski coils. Five magnetic probes were also mounted in the second section
of the accelerator to monitor the speeding up of the projectile. The projectile velocity was
determined with a relative error of 1% by a cut-wire method with targets installed at 
380 mm interval; afterwards, the velocity found was multiplied to the channel exit using
the formula Vp = V · exp(αx), where V is the velocity determined with the help of cut-wire
targets, α = 0.11 m-1 is the ballistic coefficient for a cubic body, and x = 0.740 m is the dis-
tance from the channel exit to the first cut-wire target. Comparative experiments on acce-
leration of the projectile without “pinching” the PA by striker were also performed, the
launch being organized either from free or rigid boundary (Figs. 7A and 7B, respectively).
The peak value of the current in the second stage was 125 kA. This value did not depend
on particular organization of the rear boundary of the PA. The obtained experimental data
are listed in the Table 1 (here E is the energy stored in the capacitor bank), and the kine-
matics of motion of the projectile as revealed by magnetic probes is shown in Fig. 8. The
coefficient of energy transfer in the scheme “plasma-body” is defined as β = Ep / E. For
the scheme “body-plasma-body”, two limiting cases are possible: 1) if, after interaction,
the striker completely looses its velocity; then β = Ep / (E + Es); 2) if the velocities of the
bodies at the exit from the second section are identical, then β = Ep + 1-

2
ms Vp

2) / (E + Es). 

Table 1

As follows from the Table 1 and Fig. 8, the use of the spatially distributed acceleration
scheme with a “pinched” PA allows one to substantially increase the projectile velocity
(by a factor of 4 as compared to the “plasma-body” variant with a free rear boundary and
by 75% with a rigid wall).

The possibility of cyclic adding more sections is an advantageous feature of the accel-
eration scheme under consideration; in it, the first stage (striker acceleration) can be gas-
dynamic. With the present acceleration scheme, the following scenario can be proposed
to overcome the 6–7 km/sec velocity barrier: the first two stages of the accelerator work
to overcome the critical velocity; in these stages, the striker, having interacted at an opti-
mal velocity with the projectile via the PA, impart it with a necessary (supercritical) kine-
tic energy which, afterwards, permits more effective cumulation of energy at the next
stage, etc. Here, the behavior of the pinched PA in the vicinity of the critical velocity, at
which erosion of channel walls is essential, is highly important, whereas in the experi-
ments performed in this study the effect due to the associated parasitic mass was small.
Decrease of the added mass during a two-stage acceleration is effected due to increase in
the flight time and compactness of the PA.
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Striker Plasma Projectile
ms, g Vs,

km/sec
Es, kJ E, kJ mp, g Vp,

km/sec
Ep, kJ

PA rear
boundary β , %

– – – 20.6 1.0 0.43 0.09 free 0.45
– – – 20.6 1.0 1.0 0.50 rigid 2.4

2.7 1.7 3.9 20.6 1.0 1.75 1.53 moving 6.1÷22.8



Varying the velocity of the striker, its mass, the moment at which its interaction with
the PA begins, and the energy-input function, one can optimize the acceleration process.
The latter gives grounds to believe that the critical velocities for railguns can be indeed
overcome.
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