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ABSTRACT

INTRODUCTION

Recent advances in computational fluid dynamics (CFD) techniques have led to the
development of a number of codes [1–3] for the computation of intermediate ballistics
flow fields during projectile launch. There is considerable interest in understanding the
details of such flow fields as they affect the projectile launch and the dynamic loading of
projectile, and sabot if present. Anomalous loadings have also been recorded by projectile
mounted pressure sensors. Moreover the conditions are somewhat hostile, and the pre-
sence of instrumentation may affect the details of the flow field, as demonstrated in [3].
For these reasons CFD provides an attractive option for enhancing our knowledge of the
complex flows involved.

Most of the codes employed so far have used a finite difference or finite volume ap-
proach on structured meshes, and some high resolution schemes have experienced prob-
lems in following the collapse of the shock bottle as the venting flow of propellant pro-
duct gases weakens. In this regime there is a bow shock around the tail of the projectile as
the venting gas accelerates past the projectile, which interacts with the receding Mach
disc. 

This paper examines the feasibility of using a new unstructured meshes based
code in the computation of muzzle blast flow fields. Most of the codes em-
ployed so far have used a finite difference or finite volume approach on struc-
tured meshes. The use of unstructured meshes allows for easy body fitted mesh
generation with concentration of points in key arrays. This may be computation-
ally advantageous and may alleviate some of the problems experienced by
codes based on non-body fitted meshes, particularly for very complex shapes.
The principal aim of the study was to assess if unstructured meshes based
methods are practical for the extension to three-dimensional computations. The
performance of two selected codes for structured and unstructured meshes is
compared.
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It may be therefore advantageous to explore an alternative approach – solvers based
on body fitted computational meshes. In this paper the application of triangular meshes is
investigated. Such a choice allows for easy modelling of complex shapes and in contrast
to structured non-body fitted meshes allows for improved representation of the projectile
geometry. Moreover, triangular meshes lend themselves well to adaptive mesh techni-
ques, such as mesh movement and dynamic remeshings. Boundary conditions for body-
fitted meshes can be applied directly. The advantages and limitations of the unstructured
meshes approach will be highlighted in view of the potential generalisation to a fully
three-dimensional tetrahedral mesh based solver.

NUMERICAL TECHNIQUES

Two codes were chosen for this study. They solve 2D flow, which is a mixture of two
gas phases with different γ’s. They differ very substantially in their principles, therefore
any comparisons which are made are only of the qualitative nature. However, such com-
parison already permits one to observe the general features of methodologies which they
utilize.

Structured Meshes Code

The MBIB2 code [1] is a two-phase flow code developed originally for the study of
particulate impact on the muzzle brake during the intermediate ballistics phase of projec-
tile launch. It is assumed that the highly transient compressible, but inviscid, flow is sym-
metric about the barrel axis. Turbulence is not included in the current code. A moving pro-
jectile may be included in the simulation if required, and has been included in this study.

The code solves the finite volume form of the equations of conservation of mass, mo-
mentum and energy for the gas phase using a cell-centred Eulerian approach. If a particu-
late phase is present, mass and momentum equations for this phase are added. Zalesak’s
multi-dimensional flux corrected transport algorithm [4] is employed to limit the over-
shoots and undershoots commonly associated with the numerical computation of shock
waves. The low order flux is calculated using a first order exact 1D Riemann solver, and
the higher order flux is predicted using a second-order central difference scheme based on
a predictor-corrector method.

It is assumed that both gases, that is the propellant gas efflux and air, satisfy the ideal
gas law with the appropriate gas constant and that the mixture properties are given by ap-
propriate weighted averages.

A number of calculations have been undertaken to validate this code against published
results in [3], and have demonstrated that the results from this code are in good agreement
with experimental data.
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Unstructured Meshes Code

The two-dimensional Euler equations written in the Eulerian, Cartesian coordinates
are solved by an in-house code, which is a modification of the code described in [5]. It is
assumed that both gas phases flow with the same velocity, with each of two gases occupy-
ing the volume fraction. A cell vertex finite volume discretisation in space and multistage
Runge-Kutta discretisation in time are employed. The code operates on triangular 
meshes. The mesh generation is based on the advancing front technique. The dynamic, mode-
rate mesh movement during the time-dependent calculation uses a spring analogy concept
[6]. This means that the mesh is interpreted as a spring network where each edge of each
triangle represents a spring with stiffness inversely proportional to the length of that edge.
The grid points along the outer boundary of the mesh are fixed and the instantaneous loca-
tions of the points on the surface of projectile’s segments are either prescribed or specified
by the solution of trajectory equations. The position of the interior nodes is found by sol-
ving the static equilibrium equations that result from a summation of forces at each node
in both the x and y directions. When cells become too distorted, remeshing is performed
using the advanced front technique. The code is general and allows for any geometrical
shape and mutually moving bodies to be considered. It has been extensively validated for
a range of steady-state cases. Unsteady flow and moving mesh capabilities have been va-
lidated for the NACA 0012 oscillating The dynamic remeshing permits the adaptive trac-
king of flow features such as shocks, with error estimation based on the pressure gradient. 

NUMERICAL EXAMPLES

Open Shock Tube

This standard test case was chosen in order to asses the general qualitative agreement
between the two codes, bearing in mind the difference between axisymmetric and two-di-
mensional equations as being used by the structured and unstructured meshes codes re-
spectively. Single gas (air) phase only was tested with the following internal conditions:
barrel radius = 7.60 cm, static pressure = 3.492x105 Pa, static density = 2.8116 kg/m3,
static temperature = 432.55 K, Mach number = 0.8104 and axial velocity = 337.932 m/s;
and external conditions: barrel radius = 15.2 cm, static pressure = 1.013x105 Pa, static
density = 1.225 kg/m3, static temperature = 288.00 K. A 100x100 Cartesian grid was 
used in the structured meshes code. The computational mesh of 3709 points and 7293 tri-
angular cells used for the calculation is shown in Fig. 1. The representative pressure con-
tour plot obtained from the unstructured mesh calculation at the time 1505 ms is shown in
Fig. 2. Features such as the Mach disc are clearly present and in the correct position.
There are no distinct differences in the contour plots obtained by the structured code. A
history of pressure changes at two sample points (locations: axial = 30.500 cm, radial
=11.249 cm and axial = 41.800 cm, radial =19.745 cm), obtained from the structured mes-
hes code are presented in Fig. 3 and show consistent agreement with the results taken from
[1]. Corresponding history of pressure changes obtained from the unstructured meshes
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two-dimensional code is shown in Fig. 4. As expected the values of pressure are much
higher than those obtained by the axisymmetric solver. However, the consistency in shape
and time positions with the results shown in Fig. 3 is easily noticeable. Comparisons of
pressure history in other sample points confirmed this.

81 mm Mortar

An experimental study of overpressure histories in the muzzle flow-field of an 81 mm
mortar system was undertaken recently as part of an ongoing study of gun-break signatu-
res. Twenty rounds were fired on full charge, and the pressure histories were recorded at
six different positions in the resulting flow-field, at distances between 10 and 30 calibre
(D) from the muzzle, on rays at angles of 5°, 30° and 60° from the forward extended bar-
rel axis. A detailed description of this example can be found in [3].

In the unstructured body fitted meshes this problem requires a combination of the dy-
namic remeshing and mesh movement in order to reflect the position of moving projec-
tile. Examples of triangular meshes obtained at different computational times are shown
in Fig. 5 (mesh movement) and Fig. 6 (remeshing). Pressure contour plots at two selected
times are shown in Figure 7. They correspond to the results with inlet conditions taken
from the internal ballistics calculation of gun tube venting after shot exit. The time of 
1.75 ms after the start of venting corresponds to the maximum extent of the shock bottle,
which begins to shrink thereafter. A clear bow shock is formed around the tail of the pro-
jectile while it is enveloped in the expanding gas. Comparison of experimental results
with unstructured meshes code was not conducted, since quantitative comparisons with
two-dimensional code are not possible, as illustrated in the first example.

CONCLUSIONS

An initial study of the potential of the unstructured meshes approach to modelling of
muzzle blast has been conducted, and was directed mainly to overcome difficulties in dy-
namic remeshing and mesh movement, specific to the body fitted techniques. It has been
observed that special treatments are necessary in cases when two objects in the field come
to direct or close contact during the projectile movement. This is a common feature of the
muzzle blast problem and although specific treatments for the presented numerical exam-
ples have been found there remains a need to search for a new more general approach.
The somewhat unexpected finding was a relatively fast computational running time of the
unstructured mesh based programs by comparison with the structured meshes code. This
is due to much fewer computational points being required by unstructured meshes code,
since the flexibility of the mesh generation allows for the computational points to be
placed in more optimal manner. Further qualitative comparisons are necessary, for which
an axisymmetric version of the unstructured meshes code in being developed.
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Figure 1. Shock tube – unstructured mesh.

Figure 2. Shock tube pressure contours at time = 1505 µs.
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Figure 3. Pressure history – structured meshes axis symmetric.

Figure 4. Pressure history unstructured meshes – 2-D.
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Figure 5. Details of the mesh movement before and after (exaggerated for illustration pur-
poses).

Figure 6. Remeshing of unstructured grid.

Figure 7. Pressure contour plots at 1.75 ms (left) and 2.15 ms (right) after shot exit.
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