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INTRODUCTION

With enclosed self-propelled guns and tanks, it is necessary to ensure that all or most
of the toxic propellant fumes are carried away through the muzzle and do not flow back
into the turret when the breech is opened. Fitting a sealed container, called a fume extrac-
tor, over part of the barrel and arranging small drillings into it through the barrel wall can
clear the fumes. Fig 1 illustrates the action of a fume extractor. Propellant gases passing
through the barrel fill the fume extractor with gas at high pressure. After the projectile
exits the barrel, the gas pressure in the barrel rapidly drops to atmospheric pressure. The
gas in the fume extractor exhausts as jets down the drillings which are inclined forward
towards the muzzle. These forward moving jets have a sucking effect on the gases left in
the chamber and rear of the barrel, drawing them away from the breech.

The Defence Evaluation and Research Agency (DERA) has developed a com-
putational model of the operation of a fume extractor. This computational mo-
del extended a one-dimensional (1D) internal ballistics code by incorporating
an additional chamber, representing the fume extractor, on to the barrel. The
computational model takes into account the volume of the fume extractor, the
location of the fume extractor on the barrel, the location of the drillings and
heat loss from the propellant gases to the fume extractor walls. Exchange of gas
mass, momentum and energy take place according to the local conditions in the
barrel and the fume extractor. The computational model simulates the complete
internal ballistic cycle, starting with ignition and combustion of the propellant,
shot movement and post-shot ejection of the propellant gases. Comparing its
predictions with measured data has extensively validated the computational
model. This paper presents details of the computational model and compari-
sons of its predictions with measured pressures. Details of a parametric study
are also described.
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Figure 1.

It is important to note that the gases produced from the combustion of different pro-
pellants can be significantly different. For example, one propellant could produce a much
greater amount of CO than another could. So, even if the mass of the CO-rich propellant
gas vented through the breech is less than that of the CO-poor propellant gas, the CO-rich
propellant may turn out to be more toxic than the CO-poor propellant. This paper does not
address the gas composition or the toxicity of the propellant gases.

COMPUTATIONAL MODEL

The CTA1 code [1] is a well-validated, mature computational model that simulates the
internal ballistics of conventional and novel (e.g. electrothermal-chemical) gun systems.
As the CTA1 code contained many features that could be used or enhanced to model fume
extractors, it was modified accordingly. The CTA1 model divides the region between the
breech and the base of the projectile into a number of computational cells and applies con-
servation laws to these cells. The fume extractor is modelled in a similar manner to the
barrel. In this way the variation in pressure, density, temperature and velocity of the pro-
pellant gases in the barrel and fume extractor can be predicted during the internal ballistic
cycle. The internal ballistic cycle starts from the instant the primer gases are produced,
through to the instant when the projectile exits the muzzle, and ends when there is no pro-
pellant gas remaining in the barrel. Particular features of the CTA1 code that are used to
model fume extractors are

– gas flow between the barrel and the fume extractor;
– gas venting through the breech into the turret;
– gas venting through the muzzle;
– heat transfer from the propellant gases to the barrel and to the fume extractor.

The shape of the drillings is taken into account by the use of discharge coefficients,
which can be different, depending on the gas flow direction. Fig. 2 shows a typical profile
(not to scale) of the drillings between the fume extractor and the barrel. For a 155 mm gun
the ratio of the diameters at A and B is about 3:1. The total length of the drilling would be
about 100 mm. Depending on the direction of flow in the drilling, the gases either
encounter two sudden enlargements or two sudden contractions. All of these contribute
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toward the flow losses. Frictional losses will depend on the roughness of the wall of the
drillings. Furthermore, the losses will be dependent on the flow conditions, i.e. whether
the flow is laminar or turbulent. To resolve fully the flow losses in the drillings would re-
quire the use of a viscid two-dimensional or three-dimensional code. The level of
complexity of such calculations would lead to very long simulation times and would still
be subject to errors due to uncertainties in the roughness of the wall of the drillings. An al-
ternative approach was pursued and is described in [2]. The flow losses become simply an
algebraic sum of the flow losses in and between each segment of the drillings. For
example, for the case of gas flow from the fume extractor to the barrel, referring to Fig. 2:

total flow loss  = frictional flow loss in section AC +
flow loss due to sudden contraction at C +
frictional flow loss in section CD +
flow loss due to sudden contraction at D +
frictional flow loss in section DB +
flow loss due to sudden expansion at B.

Fume extractor

Barrel

Figure 2.

Using this method, typical dimensions of the drillings and the coefficients stated in
[3] then the effective flow loss through the drillings is in the range 20–30%. This flow
loss is used in the modified CTA1 code as a discharge coefficient. The calculations
showed that there was little dependence on the direction of the flow, i.e. whether to the
fume extractor or from the fume extractor.
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Fig. 3 shows the average pressure
in the fume extractor and the gas mass
flow into the fume extractor for a typi-
cal 155 mm gun firing (maximum
chamber pressure of about 350 MPa).
The fume extractor is pressurised
quickly, at about 12 ms, after the pro-
jectile has travelled past the location of
the drillings. After reaching a peak
pressure of about 0.6 MPa the fume
extractor pressure begins to decrease,
initially due to heat loss to the barrel
and fume extractor metal. Even though
gas is flowing into the fume extractor,
this increase in mass and energy is in-
sufficient to compensate for the heat
loss. When the drillings are first expo-
sed to the combustion gases the pres-
sure at that location in the barrel is ab-
out 120 MPa. This high pressure
causes a very large gas flow rate, peak-
ing at about 1000 kg/s, into the fume
extractor. The gas pressure in the bar-
rel, and also the gas flow rate, rapidly
decreases until, at about 76 ms, the
pressure in the barrel has fallen to less
than that in the fume extractor. Gas
then flows from the fume extractor into
the barrel at a rate of about 8 kg/s, and decreasing. This reverse gas flow can not be seen
clearly in Fig. 3 because of the scale of the graph. The gas flow from the fume extractor to
the barrel continues for over 0.5 s.

Fig. 4 shows the spatial pressure profiles in the fume extractor during the first few
milliseconds after it has been pressurised. The sudden pressurisation of the fume extractor
causes comparatively large pressure waves for the first few milliseconds. However, after
about 19 ms the pressure waves have subsided. The numbers in the legend key refer to
milliseconds.

Fig. 5 shows typical spatial velocity profiles in the barrel for times in the range
150–230 ms. The shapes of the velocity profiles indicate that the jets of gas from the fume
extractor are having the desired effect of increasing the gas flow rate in the forward part
of the barrel.
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VALIDATION OF FUME EXTRACTOR MODEL

An extensive series of gun firings were carried out in the 155 mm Extended Range
Ordnance (ERO) in order to provide data for validation of the fume extractor model. The
ERO has a chamber volume of approximately 231 and a barrel length of approximately 
8 m. These gun firings investigated the effects of differences in the fume extractor volume,
locations of the drillings, gun elevation and charge mass. Measured data included gas
pressures at three locations in the fume extractor and gas pressures at the breech.

Fume extractor pressures

Fig. 6 compares the predicted and measured
gas pressures in the fume extractor for the top
charge of a modular charge system (MCS) in the
ERO. The pressure gauges were mounted at the
two ends and at the middle of the fume extrac-
tor. The peak predicted pressure is about 10 %
lower than that measured. There is excellent
agreement between the predicted and measured
pressures for the rate of fall in pressure. Fig. 7
compares the predicted and measured gas pres-
sures in the fume extractor for the bottom
charge of the MCS in the ERO. The peak pre-
dicted pressure is similar to that measured. The
predicted pressures decrease at a faster rate than
those measured. The stepped nature of the pre-
dicted pressure profile is due to the pressures
being printed to two decimal places only by the
CTA1 code.

Predictions were also conducted for a fume
extractor that was 50% larger than the standard
fume extractor. Fig. 8 compares the predicted
and measured gas pressures in the larger fume
extractor for the top charge of the MCS. Rounds
108 and 110 were fired at similar conditions.
The predicted maximum fume extractor pres-
sure is slightly less than those measured. How-
ever, the agreement between the predicted and
measured pressures after maximum pressure is
excellent.
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Breech pressures

Gas pressures were measured at the breech face to provide further data for validation
of the code and to increase confidence in the predictions of the code. The breech pressures
were measured by allowing the breech pressure gauge to become ‘active’ only after 
the instant of maximum pressure, during the later stages of the internal ballistic cycle
when the gas pressures were less than about 5 MPa. However, for some gun firings the
pressure signal drifted with time due to the
temperature sensitivity of the pressure
transducer that was used. The accuracy of
the breech pressures was estimated to be
about 0.1–0.2 MPa.

Fig. 9 compares the predicted and
measured breech pressures for the top
charge of the MCS. Rounds 116 and 129
used fume extractor volumes equal to a
25% volume increase and a 100% volume
increase respectively. The agreement be-
tween the predicted and measured breech
pressures is excellent. Fig. 10 compares the
predicted and measured breech pressures
for the bottom charge of the MCS. Both
rounds 75 and 149 used a 25% larger fume
extractor volume. The measured pressures
show some round-to-round variability.
The agreement between the predicted and
measured breech pressures is good. Howe-
ver, the predicted breech pressure does not
decrease as quickly as the measured pres-
sures.

PARAMETRIC STUDY

Having validated the computational model, and gained considerable confidence in its
predictions, a parametric study was conducted to investigate the effects of various para-
meters on the fume extractor pressures and the gas mass vented through the breech. The
parametric study investigated the effects of the following parameters: outer radius of
fume extractor, length of fume extractor, location of fume extractor, location of drillings
and the number and diameter of drillings.
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Fig. 11 shows the predic-
ted fume extractor pressures
for the top charge of the
MCS for various conditions.
Increasing the volume of the
fume extractor has the ex-
pected effect of decreasing
the pressures in the fume
extractor. Increasing the
number of drillings increa-
ses the maximum fume
extractor pressure. Shifting
the drillings from the muzzle
end of the fume extractor, to-
wards the breech end, has the effect of increasing the fume extractor pressures. This in-
crease in the pressure is expected because the gas pressure in the barrel increases in the
direction of the breech. Similar trends occurred for the other charges of the MCS.

During the recoil of the gun, the breech is opened automatically to allow the loading
of a new projectile and charge. The time at which the breech began to open and the time at
which the breech became fully open were measured in several gun firings. For a typical
firing these times were about 0.3 s and 0.5 s respectively. The CTA1 code was used to
compare the gas mass vented through the breech for a range of conditions. Increasing the
number of drillings, which is equivalent to increasing the flow area, has the effect of in-
creasing the gas mass vented through the breech. This finding is supported by experimen-
tal data that found increased levels of carbon monoxide when the diameter of the drillings
was increased [4].

CONCLUSIONS

A 1D internal ballistics code has been extended to simulate the operation of fume
extractors by incorporating a secondary chamber and allowing exchange of gas mass, mo-
mentum and energy between the secondary chamber and the barrel. The computational
model takes into account the volume of the fume extractor, the location of the fume
extractor on the barrel, the location of the drillings and heat loss from the propellant gases
to the fume extractor walls. The fume extractor model does not address the problem of the
toxicity of the propellant gases.

The behaviour of the fume extractor model is consistent with that seen in gun firings.
Extensive gun firings have allowed the fume extractor model to be successfully validated
for a wide range of different conditions.
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