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INTRODUCTION

High surface temperature on the inner side of a gun tube associated with the abrasive
effect of the moving projectile can lead to an amplified erosion which in a high-power
weapon system results in an unacceptable reduction of the life duration of the tube. 

There are two ways of reducing this thermal erosion:
– in the first one the tube is coated with a refractory metal which can sustain the thermo-

mechanical stress (chromium coating in operational systems);
– the second has a direct influence on the heat transfer to the wall:

– either on the tube side by using adapted multilayer coatings,
– or on the gas side by using a modified propellant or a wear-reducing additive.
This paper deals with the modeling of the latter method. In [ ] it is shown that a deposit

of silicon dioxide can be obtained on the inner wall of a gun tube. It has been considered
desirable to have a model to explain the results. Based on experimental findings the tube
is described as a layer of silicon dioxide deposited over the steel part of the gun. 

The heat transfer related to thermal erosion has been simulated using Reynolds’
analogy (postulate of an analogy between heat and momentum transfer). The
roughness of the inner surface is a key parameter of the model. To take into ac-
count the steep gradients of temperature induced by the use of silicon dioxide
as a protective material it is necessary to use temperature-dependent thermal
diffusivity and conductivity. In accordance with the experiments the model per-
mits to show that the layer can limit the temperature elevation in the steel.
There is no risk of fouling because if the layer grows too much, its surface tem-
perature reaches the melting temperature of the material and the excess mate-
rial is blown away. 
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MODELING

Our purpose is to simulate accurately and simply the heat transfer from the gas to the
tube in order to be able to perform parametric calculations. For the sake of simplicity the
ballistic part of the calculation is based on IBHVG2 [ ]. IBHVG2 provides us at each in-
stant with the following properties necessary for the heat transfer estimation:
– Vproj: velocity of the projectile
– Pmean: mean gas pressure in the tube
– Tmean: mean gas temperature in the tube

The gun is described by the volume of the combustion chamber, its equivalent length
l0, the length of the bore, the diameter of the bore D. As there is no erosion in the combus-
tion chamber, only the heat transfer to the tube will be simulated.

Modeling the Heat Transfer from the Gas to the Wall

Our aim is to calculate the heat transfer which is given by the formula (1).

(1)

with: h: inner wall heat transfer coefficient (W/m2·K)
λ: thermal conductivity of the tube (W/m·K)
TG, TW: temperature of the gas, of the tube (K)
T: temperature inside the tube (K)
r: radial position in the tube (m)

Using Reynolds’ analogy which states that the heat and momentum transfers are per-
formed by the same particles we can write:

(2)

with: ρ: gas density (kg/m3)
Cp: specific heat of the gas (J/kg)
Vm: gas velocity (m/s)
f / 2: friction factor (dimensionless)
τp: strain at the wall (kg/m·s2)

Equation (2) gives:

(3)
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Equation (3) can be expressed in variables which are found more currently in the do-

main of interior ballistics. ρ can be replaced by                  , where M is the molecular mass

of the gas and R the perfect gas constant. CP can be replaced by              (γ is the ratio of

specific heats) and the velocity Vm of the gas at any point x in the tube can be calculated as 

(l is the displacement of the projectile).

Thus we obtain:
(4)

According to this formula it is not surprising to observe serious erosion problems in
high-power guns because in this case the product Pmean Vproj is high. Small defects on the
inner wall will induce turbulence, i.e. locally increase the friction factor and also the size
of the defects. 

As will be seen in the next section, the layer obtained in the experiments has a diffe-

rent roughness from that of the raw steel surface, so it is important to take into account the

surface roughness when estimating the friction factor f/2. The latter depends on the type

of flow (laminar, turbulent), on Reynolds' number                      and on the relative rough-

ness rug/D of the tube. For the flow inside a gun tube Reynolds’ number is always high, in

the order of 106 to 108. In these conditions, the friction factor can be calculated using the

relation of Churchill given in [3].

(5)

Simulation of the Heat Transfer in the Tube

The equation governing the heat transfer in a cylindrical geometry is well known.
Making the assumption that heat propagates only radially allows us to work with only one
space coordinate. We use the following equation:

(6)

The notations here are:
ρS: density of the solid (kg/m3)
CPs: specific heat of the solid (J/kg·K)
t: time (s)
a: thermal diffusivity of the solid (m2/s)
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Generally, the right-hand term of the equation (6) is derived considering that the heat
conductivity is independent of the position. In our case this assumption is no longer valid
and we must take into account the variation of the conductivity with the position. One ob-
tains: 

(7)

This equation is solved using a finite difference method for a semi-infinite tube in the
radial direction with usual boundary conditions: at the wall, the heat flux is given by
equation (1), and at the other end it is equal to zero. At the interface between the layers we
assume that the heat fluxes are the same on both sides of the interface and that there is not
contact resistance to the heat transfer (the temperature is the same on both sides of the
interface).

As an initial condition, a constant temperature of 300 K is assumed all over the barrel.

EXPERIMENTAL RESULTS IN A 20 MM CALIBER GUN

Location ot the Sensors

The series of shots have been fired with a 20 mm laboratory gun which is described in
[1]; the pressure inside the chamber has been measured with a Kistler gage. An intermedi-
ate insert between the combustion chamber and the tube is fitted with surface probes and
temperature sensors [4] to measure the temperature inside the wall. Some other plane sur-
face probes can be fitted at different points along the tube. The position of this insert and
of the probes can be seen on Fig. 1.

Experimental Results

A first series of shots using a Nena-G4
propellant (63% NC, 35% DINA, 2%
Aerosil 300) prepared at ISL has shown
the following facts:
– the surfaces of the surface probes and

of the insert are covered with a well-
adhesive layer;

– there is no significant variation in the
layer thickness with the number of
shots (from 2 to 10);

– the thickness of the silicon oxide layer
is approximately 10 mm on the insert
surface and the layer is somewhat thin-
ner on the surface probes;

– the thickness of the layer decreases with the distance, but the tube can still be covered
at a distance of 50 calibers.
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Figure 1: View of the part of the gun con-
taining the tube insert.



An example of layers obtained in the tube insert after 10 shots is shown in Fig. 2.

Figure 2: Layer obtained with Aerosil included in G4 propellant.

Another series of shots has been performed with a very high burning temperature GB
Pa 125 propellant and Aerosil has been added as a separate part of the propelling charge.
The coatings obtained are smoother than for the shots with G4 propellant. This can be
seen on Fig. 3, which was made after 3 shots.

Figure 3a: Surface after 3 shots. Figure 3b: Magnification of Fig. 3a.

SIMULATION RESULTS

Thermal Properties of Steel and Coating 

As was said previously it is necessary to take into account the variation of the thermal
conductivity and diffusivity with temperature. For both materials the density is conside-
red to be a constant. Only the conductivity, the specific heat and the resulting diffusivity
are considered to be dependent on temperature. The thermal properties are taken from [5]
for the specific heat and from [6] for the thermal conductivity. 
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Simulation without any Coating

On Fig. 4, a comparison is shown between measured and calculated results. The pres-
sure in the chamber is calculated with IBHVG2, for a shot with the 20 mm gun. The pro-
jectile mass is 122 g and 50 g of GB Pa 125 French propellant are used without an addi-
tive; the initial velocity is 1085 m/s. The temperature at measuring point No. 4, at 72 mm
from the forcing cone is calculated from the results of IBHVG2 with our simulation. The
roughness of the steel tube is set to 0.2 µm. It can be seen that the maximum temperatures
are in good agreement with each other. The slopes of the temperature curves after a maxi-
mun has been reached are also consistent with each other. 

Simulation with a Coating of Silicon Dioxide 

Firstly, the heat transfer model is applied to a tube coated with the measured thickness
of silicon dioxide in order to check if the simulation can be a reasonable description of the
reality. The simulation refers to an experiment with 50 g of GB Pa 125 propellant carried
out at the end of a series of 10 shots. At this stage of the experiment the tube insert is coa-
ted with a layer of 10 mm of silicon dioxide and the roughness is clearly higher than for
steel. It is estimated to be 0.5 µm. The curves of Fig. 5 show that the temperature at the lo-
cation of the temperature sensor is reduced by approximately 120 K compared to the case
with no protective layer. The temperature at the steel surface is reduced by 150 K.

Figure 4: Comparison between. Figure 5 : Temperature calculated
– measured and calculated pressures. for a layer of 10 µm thickness.
– measured and calculated temperature increase.

Secondly, calculations are made with different thicknesses of coating material, in or-
der to determine the maximum thickness obtainable. If Aerosil is used as an additive,
every shot will deposit a thin layer of material. From shot to shot the thickness will incre-
ase until the surface temperature reaches the melting temperature of silicon dioxide, and
then the thickness of the layer will remain constant, as no more additive can be deposited.
For silicon dioxide the melting temperature is approximately 1880 K. Fig. 6 shows that
the surface temperature increases when the thickness of the layer increases. For a thick-
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ness of 25 µm the surface temperature is 1880 K, which demonstrates that the layer can-
not grow for ever. Fig. 7 shows the interface temperature for different thicknesses. It is
clear that the insulating effect increases at the same time as the thickness. 

Figure 6: Surface temperature for different Figure 7: Temperature at the interface for 
thicknesses of coating. different thicknesses of coating.

CONCLUSION

A simple model of heat transfer has been built based on correlations from the domain
of fluid mechanics. This model can be correlated with temperature measurements in a
gun. Using silicon dioxide as an additive allows to reduce the steel temperature by appro-
ximately 150 K. 
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