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A STUDY ON THE EROSION CHARACTERISTICS OF THE
MICROPULSED PLASMA NITRIDED BARREL OF A RIFLE

Dong-Yoon Chung, Hee Jai Kim, H. N. Kim

Department of Weapons Engineering, Korea Military Academy, Seoul, South Korea

This study evaluates the erosion characteristics of the nitrided barrel of arifle.
The surface of wear sensor was enhanced by micropulsed plasma nitriding and
postoxidation technology. Three types of wear sensors were used to compare
the effect of surface treatment such as nitriding and postoxidation as well as
without surface treatment. The surface of each sensor had an indent pressed by
a Vickers microhardness indenter. The wear was measured by the change of
depth of the indent. The cross section of the sensor was analyzed by an optical
microscope and SEM after firing 400 rounds.

The results show that the porous nitriding and postoxidation of magnetite trea-
ted sensor represents the best anti-erosion characteristicsin the free flight zone.
However, in the center zone, peeling of the oxide layer occurs under the surface
of each treated sensor by thetangential cracks.

1. INTRODUCTION

In the case of small arms, it is known that the primary factors in deterioration of the
performance of the barrel are the erosion due to high temperature as well as high pressure
propellant gas and the scoring caused by the bullet traveling at high speeds. In order to
solve the problem of deteriorating performance of the barrel now in use, the free flight
zone which isthe part of the barrel that is most prone to wear, istreated with hard chrome
coatings. The hard chrome coating however has a few problems. The coating degrades
thermodynamically in high temperature environments. The coating is subject to erosion
and deterioration of the hardness due to micro cracks in the coating layer. The coating
thickness is not uniform because the electrical conductivity is not uniform. The friction
coefficient isrelatively high and the anti-corrosion characteristics are not so good. [1-3]
Thereisthe method of depositing the hard chrome coating by aPVD process[4], but there
exists atechnical problem of using the method in abarrel 5.56 mm in diameter. Thereis
also a method of using a material with better anti-erosion and anti-wear characteristics
than the hard chrome coating but it has a problem of high cost. Therefore in this study, to
develop amethod to replace the hard chrome coating used in the barrel of small arms, we
used the nitriding and postoxidation treatment on the surface of the barrel, which has
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good anti-erosion characteristics, using the bipolar micropul sed technology. To assess the
improvement in anti-erosion characteristics in the barrel, we used three kinds of
specimens such as a barrel without surface treatment and a barrel with nitriding and
postoxidation treatment. The erosion by the propellant gas was analyzed and compared
among them. We would like to find out which specimen has the best anti-erosion
characterigtics and to present the best treatment for improving the anti-erosion characteristics
of asmall armsbarrel.

2. EXPERIMENT

2.1 Surface Treatment of Erosion Wear Sensor

In this study we made awear sensor to monitor the erosion characteristics. The mate-
rial for the sensor is a Cr-Mo-V dloy used in the barrel of small arms according to the
MIL S-115957 standard. The sensor was heat treated at 850°C for 1 hour and then oil
guenched, and tempered for 2 hours at 600°C to get the hardness of 26~32 HRc.

Table 1. Preparation for the wear sensor

wrface Nitriding
trestment Oxidaion
gecimen Dense | Porous
A
DNO . .
H\IO [ ] L]

There were 3 kinds of surface treatment for the sensor, which is stated in Table 1, in-
cluding as-received. Before the surface treatment, the sensor was polished until emery pa-
per #2000 so the surface roughnesswas 0.2 um Raequally.

The surface treatment process is stated in Table 2, and to obtain a porous compound
layer, 3% N»O was added to control the structure of the compound. The equipment used
for the nitriding and postoxidation treatment was the plasma nitriding system made by
Ruebig in Austria, and the power was 240 kW of the bipolar micropulsed type.

324



A Study on the Erosion Characteristics of the Micropul sed Plasma Nitrided Barrel of aRifle

Table 2. The process of surface treatment

- gas pressure (/hr) T | Ve P Puse | Time
Ar Ho | N2 N2O (°C) V) (mbar) | (on/off) (hr)
8| sputtering 40 | 2 570 | 500/750 0.95 05
Q
> B nitriding 30 | 115 5 580 | 500/550 3 7
§ @. sputtering 10 80 | 45 500 | 350/680 2.2 80/75 0.5
¢ nitriding 100 | 30 525 | 480/535 3.95 90/95 20
Oxidation H20,510°C, 2Hr

2.2 Experimental system

Figure 1(a) shows the experiment apparatus to analyze the erosion characteristics by
propellant gas. A caliber 5.56 mm barrel and aregular M193 bullet was used. The center
zone of the barrel was kept at 260 ~320°C using an externally wrapped heater to get the
thermal condition for continuously fired 400 rounds. The temperature of the barrel was
measured by inserting the thermocouple 1 mm into the bore. The free flight zone was kept
at ambient temperature.

The wear sensor (Fig. 1(b)) was made into arod type of radius 5.5 mm, and put under
surface treatment according to Table 2. Also on the surface of the wear sensor, we made
an indent by amicro hardness tester with 1000 gf to measure the wear. The sensors were
inserted in the center zone, 27 cm away from the free flight zone and the cartridge cham-
ber. Sealing tape was used to prevent gas |eakage. 400 single rounds werefired.

After the firing 400 single rounds, the sensor was analyzed using an optical micro-
scope to determine the anti-erosion characteristics such as preservation of the oxide layer
and the nitride-oxide layer, the presence of cracks and their propagation in depth, and the
peeling of the surface.
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Fig. 1. Experimental system, (a) Test barrel (Ieft), (b) Schematic diagram (right).

The change of the size of the indent on the surface was analyzed to determine the
amount of wear according to the different surface treatments. The amount of wear can be
determined by the changein size of the indent. The difference in the size of the indent be-
fore and after firing allows us to calculate the amount of wear and the wear rate using
equation dw=(D1-D»)/2tan@.[5-7]

3. RESULTS AND DISCUSSION

3.1 Micro-structure analysis

According to the XRD results shown in Figure 2, the oxide layersare all single phased
magnetite regardless of the denseness or porousness of the compound structure.
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Fig. 2. XRD analysis of each sensor, (a) Dense (l€ft), (b) Porous (right).

Figure 3 shows the result of the SEM analysis taken after nitriding and postoxidation
treatment of the barrel material. In both cases magnetite layers are formed on the surface
shown in the images as the white layers, and the compound layer is maintained dense or
porous. The nitride layer isabout 10 um, and the oxide layer is about 3 um. Especially in
the case of (b), the boundary between the nitride layer and the oxide layer isnot asclear as
(8). Thisisbecause the oxide layer was formed after filling in the porous nitride layer.
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Fig. 3. Cross sectional image of each sensor, (a) Dense (left), (b) Porous (right).
3.2 Erosion characteristics analysis
The change of the size of an indent on the surface of the sensor is analyzed using an
optical microscope after the firing every hundred rounds. However the cross section is

observed after firing 400 rounds to check the change of the crack propagation and whe-
ther the compound layer is preserved or not.

3.2.1 Erosion characteristics according to surface treatment

Figure 4—Figure 6 show the surface and cross section of the sensor in the free flight
zone (FFZ) of the barrel according to surface treatment. Figure 4 showsimages of the bar-
rel material used in the present. It showsthat the size of theindent decreases considerably,
and the amount of wear after firing 400 roundsis 2.67 um. Also as can be seen in the pic-

Fig. 4. Surface and cross sectional images of the barrel material (FFZ).

Figure 5 shows the sensor with magnetite oxidation after dense nitriding treatment
(DNO). The amount of wear after firing 400 rounds is measured to be 2.06 um by obser-
ving the change in the size of the indent. Thisis a 23% decrease in the amount of wear
compared to the barrel in present use. From the cross section we can see that the cracks
developed into the depth, but preservation of the compound layer is satisfactory.
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Fig. 5. Surface and cross sectional images of DNO sensor (FFZ).

Figure 6 shows the sensor with magnetite oxidation after porous nitriding treatment
(PNO). The change in the size of the indent is difficult to measure acurately because of
the porousness, but the amount of wear after firing 400 roundsis about 1.97 um. Thisisa
26.1% decrease in the erosion compared to the barrel used in the present. From the cross
sectional pictures, we can see that the cracks are shorter compared to the DNO and the
preservation of the compound isalso excellent.

Fig. 6. Surface and cross sectional images of PNO sensor (FFZ).

Figure 7—Figure 9 show the surface and cross section of the sensors from the center
zone (CZ) of the barrel. Figure 7 represents the barrel material used in the present and the
amount of wear after firing 400 roundsis 1.83 um. However as opposed to the free flight
zone, thereisn't any surface crack or crack propagation into the depth.

B L T T

Fig. 7. Surface and cross sectional images of the barrel material (CZ2).
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Figure 8 shows the sensor with magnetite oxidation after dense nitriding treatment of
the compound layer. According to the cross sectional image, tangential cracks under the
surface are more severe than the cracks across the boundary between the nitriding layer
and the oxidation layer, thus resulting in the peeling of the oxidation layer. Thisisthe re-
sult from the fact that the oxidation layer can not withstand the shear stress from the mov-
ing bullet. However the preservation of the core material is satisfactory and there is not
any damageto the material.

Figure 9 shows the sensor with magnetite oxidation after pourous nitriding treatment
of the compound layer. Analysis of the cross sectional image shows that, like the DNO
treated sensor, there exist tangential cracks under the surface resulting in peeling of the
oxidation layer, but the compound layer is preserved. In both Figure 8 and Figure 9, it is
difficult to analyze the remains of the indent. However, roughly analyzed, the anti-erosion

esent use.

Fig. 9. Surface and cross sectional images of PNO sensor (CZ).

3.2.2 Measurement of the erosion from the propellant gas

Before the firing experiment a micro hardness tester was used to make indents on the
surface of each sensor. The amount of wear is calculated by computing the difference of
the depth of each indent by measuring the change of diameter of each indent after firing
200 rounds, and after firing 400 rounds. The results are shown in Figure 10. They show
graphically the amount of wear in the free flight zone and in the center zone. Asshownin
the graph, the amount of wear in each sensor increases more or less linearly as afunction

329



Launch Dynamic & Propulsion

of roundsfired. In the free flight zone, the PNO treated sensor shows the best anti-erosion
characteristics with 1.98 um of wear. Also, in the center zone, the PNO treated sensor
shows the best anti-erosion characteristics with 1.22 pm of wear. Comparing the amount
of wear in thefreeflight zone and the center zone, it is clear that the amount of wear islar-
ger inthe free flight zone. This shows that erosion resulting from the propellant gasislar-
ger in the free flight zone compared with the center zone. This result seems natural since
the pressurein the freeflight zoneisabout double that of the center zone.
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Fig. 10. Theamount of wear of each sensor, (a) Freeflight zone, (b) Center zone.

4. CONCLUSIONS

The surface of wear sensor was put under nitriding and postoxidation treatment after
controlling the compound layer densely or porously using the micropulsed plasma nitrid-
ing technology. The sensor was inserted into the free flight zone and the center zone. The
erosion characteristics by the propellant gas were measured and the following conclu-
sionswere obtained.

1) Inthefreeflight zone, oxidation after porous nitriding treatment shows the best anti-
erosion characteristics and the preservation status of the compound layer.

2) Inthe center zone of the barrel, there are no big differencesin the anti-erosion charac-
teristics for the different surface treatments. However, there is peeling of the oxide
layer by tangential cracks under the surface resulting from shear stress.

3) Comparing the environment between the free flight zone and the center zone of the
barrel, the pressure from the propellant gas is the dominant factor in determining the
erosion characteristics.

4) Regardless of the surface treatment, the wear increases linearly as a function of the
roundsfired.

5) The peeling of the oxide layer which occurs in the center zone of the barrel, needsto
be studied further for validating the micropul sed plasmanitriding technol ogy.
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