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FRICTION AND WEAR MECHANISM AT HIGH SLIDING
SPEEDS

Takao Matsuyama

The Japan Steel Works, Ltd., Hiroshima plant, 1-6-1, Funakoshi-minami, Aki-ku,

Hiroshima-city, Japan

A new melting wear theory of the slider is proposed based on the non-steady
heat conduction equation. The friction coefficients calculated with the theory
agreed well with those reported by previous workers. The estimated val ues of
the slider wear also agree well with those obtained experimentally. The melting
wear theory is confirmed to estimate the melting wear quantitatively from ther-
mal properties of sliders. Based on the theory, a practical selection method of
slider material has been established.

NOMENCLATURE

aB
as
h

Hs
p

aB
ds
QB
Qs

thermal deffusivity of bore (m2/s)

thermal deffusivity of slider (m2/s)

melting thickness of slider (m)

latent heat of slider (Jkg/K)

contact pressure (Pa)

heat flux to bore (W/m2)

heat flux to slider (W/mz2)

thermal energy to borein an unit area (J/m?2)

thermal energy to slider in an unit area (J/m2)

total thermal energy in passage of dider in an unit area (Jm2)
elapsed timefrom slider contact (s)

corrective factor of time (s)

elapsed timefrom shell body started (s)

total timeinterva defined asthe sum of solid- and partial melting-contact time (s)
timeinterval of solid contact condition (s)

initial temperature of sider (K)

initial temperature of bore (K)

melting point of slider (K)

velocity of shell (m/s)

slider width (m)

333



Launch Dynamic & Propulsion

WR  wear ratein an unit time (m/s)

As  therma conductivity of slider (W/m/K)

Ag  therma conductivity of bore (W/m/K)

Mmean Mean friction coefficient (--)

Ms  friction coefficientin solid state contact condition (--)

Wy friction coefficient in melting state contact condition (--)
ps  density of dider (kg/m3)

INTRODUCTION

The traveling shell is rotated as the slider goes along the bore groove. If the dlider is
worn away, an adequate spin rate could not be attained. Recently, the excessive wear of
the slider has been reported [1], because higher shell velocity has been required. Wear at
high dliding speeds was experimentally studied by R. S. Montgomery [2]. No one hasre-
ported theoretical treatment on the slider wear. Our previous study revealed that the sur-
face of the dlider meltswithin afew centimetersfrom the onset of shell movement [3], de-
monstrating that the slider wear occurs mostly in the molten condition.

The present paper describes the theory of slider wear by applying one-dimensional
non-steady heat conduction equation. Thermal properties of copper-based materials were
carefully measured at higher temperatures. Friction coefficients between slider and bore
surface were estimated and contact conditions are discussed. Based on the discussions
above an adequate material for slider is presented.

THEORY

Fig. 1 showsarelationship between the contact condition, the surface temperature and
heat flux when the dlider moves at an arbitrary position in a bore. In this figure, the
following two assumptions are made; (1) temperature of the entire dlider surface has
reached its melting point, (2) the contact condition changes from solid state contact to
partial melting state contact and finally to melting state contact as direction goes to the
rear end.

In the solid state contact condition, the surface temperature of the front area of the sli-
der has reached the melting point, but the surface melting is restricted by the latent heat.
In thiscondition, the solid state friction causeslarger heat flux than those flowing in to the
dider astheresult the surface temperature of boreincreases.

In the partial melting state contact condition, the generating heat flux decreases to a
level to maintain the bore surface temperature at the melting point of the slider. Decrease
in heat flux isbrought by the decreasein friction coefficient dueto the partial melting.

In the melting state contact condition, the generating heat flux becomes constant with
the melting lubricated friction. In this condition, heat flux to the bore decreases because
timeinterval from the onset of contact increases with direction toward rear end of dlider.
Accordingly, the thickness of melting layer increases as distance goesto the rear end.
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Figure 1 — Schematic of contact condition of slider, surface temperatures and heat flux to
slider and bore dliding at a constant contact pressure and velocity.

Based on this model and an one-dimensional non-steady heat conduction equation, a
theory of the slider wear for an arbitrary section of the bore is proposed. The nomencla-
tures used in the following equations are described above. The heat flux to the slider (gs)
isdefined in eq (1), under assumption that the surface temperature of the slider reachesits
melting point at the onset of shell movement. This assumption could be provable, because
the surface melting was found to occur shortly after ashell startsto move[3].

— As(Tys ~Tos) (1)

q
> N8 tgy

A time interval of solid contact condition (tg) is defined in eq (2). It is equal to the
time to raise the bore surface temperature to the melting point of slider. The heat flux to
the bore (gg) is the result of subtracting heat flux to the slider from generated heat flux
and definedin eq (3).

2

2
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After the surface temperature of bore reaches the melting point of the slider, the sur-
face temperature remains constant. A non-steady heat conduction equation for a constant
surface temperature is adapted by introducing a corrective factor of time (t*) asdefined in
eq (4). So, heat flux to the bore (qg) can bedefined in eq (5).

2 2
p=M [Tus~Toe (4)
T ag ds -
_ 5
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A total timeinterval (tmg) is defined as the sum of solid contact time and partial mel-
ting contact timein eq (6).

_1 A
T a,

2

TMS _TOB +t

K, -P-V—(Qs

t -t* ©)

ms se

Thermal energy transfered to the bore and solid slider in an unit area can be cal culated
by integrating each heat fluxes. Thus the generated thermal energy (Qf), the thermal
energy to the dlider (Qg) and thermal energy to the bore (Qg) are described in eq (7) to

9).

W,
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When the generated thermal energy islarger than the total energy that flows to the so-
lid slider and to the bore, the slider may be melted with the excess energy. The melting
thickness (h) isdefined in eq (10) under the assumption of uniform melting on the surface

of thedlider.
h = QT _(QS+QB)
Hsps (10)

Qs le

=ugp-v-

(9)

The wear rate (WR) shown in eq (11) is obtained by dividing the thickness with the
passing time of the slider.

WR W, (11)
A total wear of a dlider could be estimated by integrating the wear rate in the whole
process with time. In the estimation process described above, reliability of severa ther-
mal propertieswould be essential to obtain accurate estimation results.
THERMAL PROPERTIES
Table 1 shows the thermal properties necessary for the estimation of slider wear. The

thermal diffusivities were measured with the laser flash method and the specific heats
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with the differential scanning calorimeter (DSC). The melting points and the latent heats
were obtained with the differential thermal analysis (DTA). The thermal conductivities
were cal culated from the corresponding thermal diffusivity, specific heat and density.

Since red brass has the highest thermal diffusivity and thermal conductivity in these
three copper-based alloys, red brass can be estimated to have the best resistance to the gli-
der wear, because of itshigh heat diffusivity, melting point and latent heat.

Table1 Thermal Properties of Slider Materials
Material Red Brass Brass Al-Bronze

Density* (kg/n?) 8710 8370 7750
Specific heat** (kIKg/K) 0.461 0.507 0532
Thermal conductivity**  (W/m/K) 262 153 88
Thermal dif fusivity**  (mm?/s) 65.6 36.2 21.3
Melting point (K) 1310 1161 1298
Latent heat (kI/kg) 154 105 143

* Room temperature ** 873K

DISCUSSION OF RESULTS

Friction Coefficients

Fig. 2 shows the relationships between sliding travel and friction coefficient cal culated
with the theory described above. This calculation was carried out on the condition that the
contact pressure is 150 MPa and the sliding velocity is 200 m/s. These conditions are
equivalent to those of the pin-on-disk test reported by R. S. Montgomery [2].

0.4
Contact Length: 2.5mm

k)
2 03 Contact Cengtht 25mm
©
o & / Contact L/emgth: 50mm
So02 Sider:
-‘Lg: Red Brass
§ Contact Pressure:

0.1
= ~— ¥ v 150MPa

L Sliding Velocity:
00 200m/s
0.0 0.5 10 15 20

Sliding Travel (m)

Figure 2 — Relationship between slider travel and mean friction coefficient.

337



Launch Dynamic & Propulsion

The mean friction coefficient is an average value in the direction of the slider length,
whichisdefinedin eq (12).
_ Qr/(Ws/v)

p-v

The mean friction coefficient rapidly decreased shortly after the onset of shell trave-
ling and leveled off in the range of the sliding travel between 0.5 m and 1.0 m. The value
of mean friction coefficient at higher sliding travels was about 0.2 in the case of contact
length 2.5 mm, which agreed well with those reported by R. S. Montgomery [2].

Himean

(12)

Contact Conditions

Fig 3. shows the change in the contact condition for slider lengths ranging from 0.1
mm and 1.0 m. Asthe dider travels, the borders of contact conditions shifted toward the
front end of the dlider. It is natural to think that the heat flux into slider could decrease as
thedliding travel (or dliding time) increases.

It should be noted that the partial melting contact might appear in the reported pin-on-
disk test using 2.5 mm length specimen [2].

1000.0 ; :
E \\ 3 Mdlting Contact —
§ 1000 A
i
T
St
@ £ 10.0 a Matng'ee Slider:
g Red Brass
© Contact Pressure:
(&)
§5 1.0 150MPa
) Sliding Velocity:
A ————
\ Solid State Contact 200m/s
0.1
0.0 0.5 1.0 1.5 2.0

Sliding Trave (m)

Figure 3— Relationship between sliding travel and contact conditions.

Estimations of slider wear

Fig. 4 showsthe calculated results of the melting wear versus sliding travel for several
copper aloys. The values of the calculated wear of red brass, Al-bronze and brassincrea-
sedinthisorder in thewholetravel range. This estimated order agrees well with observed
order in our laboratory. The value of the slider wear became constant above aslider travel
of 4 m, whose value ranged from 1.5 mm to 3.7 mm depending on slider materials.
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Figure 4 — Relationship between Slider Travel and Melting Wear.

Value of Melting Wear (mm)

According to our theory, a material with higher values of thermal properties (thermal
diffusivity, thermal conductivity, melting point and latent heat) decreases slider wear, i.e.
red brass slider exhibited better resistance in the melting wear compared to Al-bronze-
and brass-slider.

CONCLUSIONS

(2) Our melting wear theory enables us to discuss the friction and wear phenomena quan-
titatively by using thermal properties of the lider materials.

(2) Themean friction coefficient decreases asthe slider length increases.

(3) Within candidate materials, red brass which has higher values of thermal properties
(therma conductivity, thermal diffusivity, melting point and latent heat) was proved
to be the most suitable material for the slider.
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