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Abstract

This paper describes the development of a composite sabot for armor-piercing,
fin-stabilized, discarding-sabot (APFSDS) kinetic energy (KE) projectiles. A sa
bot is the package that carries the kinetic energy (KE) subprojectile while in the
bore of the gun. As such, it has several functions: to support the long-rod penetra-
tor during high axial acceleration, to sed the bore of the gun to the high-pressure
propellant gas, and to separate from the penetrator after muzzle exit with minimal
transverse disturbance on the penetrator motion. Since the sabot is discarded after
muzzle exit, the sabot massisparasitic, reducing the kinetic energy availableto the
penetrator from the launch phase. This consideration leads directly to the crucia
requirement to minimize sabot weight. The efficiency of composite materials to
reduce the weight of sabotswas demonstrated during the Armament Enhancement
Initiative (AEI) program. In the course of this program, two new kinetic energy
120-mm tank gun cartridges featuring different sabot and propelling charge tech-
nologiesweretype-classified. Thefirst (the M829A 1) was devel oped very rapidly
using state-of-the-art aluminum sabot technology. The sabot for the later, higher
performance cartridge (the M829A2), was manufactured with graphite fiber-rein-
forced epoxy material and represented a 35% sabot weight reduction.

The sabot for the M829A2 projectile represents a substantial stop in the devel op-
ment of composite materials. The sabot isone of thefirst high-performance, thick-
section composite partsto be designed and manufactured in production. New anal-
ysistools were developed to model the processing of the composite materials, the
design loads on the structure, and the effects of defects in the thick-section parts.
This hasincluded the development of LAMPAT software, which alows ply-level
analysis of thick-section, three-dimensional composite structures. In conjunction
with LAMPAT, anew composite failure criterion was devel oped to account for the
unique loading conditions within the sabot. Subscal e experiments were devel oped
and used to define strength allowablesin locations where numerical models could
not predict structural performance. Processing modelswas devel oped to minimize
the effects of defectsin the structures and reduce manufacturing cost. The results
of thiswork led to the ability to rapidly design highly efficient sabotswith minimal
experimentation on full-scale structures.
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1. INTRODUCTION

Kinetic energy (KE) ammunition is the primary method of defeating enemy main
battle tanks in tank-to-tank encounters. This type of ammunition relies on kinetic energy
achieved through high velocity and heavy, high-aspect-ratio rods to penetrate the heavy
frontal armor of amain battle tank. It is through the use of the kinetic energy that the rod
penetratesthe hull and destroysthe tank.

In KE ammunition, the sabot is the component that carries, by shear transfer along a
grooved interface, asub-caliber projectile (the subprojectile) during the roughly six milli-
seconds of in-bore time. It must support the subprojectile through axial accelerations of
up to 75,000 g's, withstand pressure from the gun ballistics (breech pressures over
100,000 psi), and provide the “ suspension” for the subprojectile by controlling transverse
motion as the projectile accel erates down the gun tube. Upon muzzle exit, the sabot must
discard with minimal disturbance to the flight of the projectile. Therefore, the sabot isre-
sponsible for the structural integrity of the projectile and provides the initial conditions
for theflight of the projectile, influencing its accuracy.

The only part of the projectile that reaches the target is the subprojectile. The massin
other parts of the projectile (the sabot, obturator, and seals) is parasitic and limitsthe kine-
tic energy available for penetration. Since the penetration effectiveness of the subprojec-
tileis proportional to the velocity on target, it is paramonnt that the sabot, seal, and obtu-
rator be as light as possible to maximize the kinetic energy of the subprojectile. This
consideration leads directly to the crucial requirement of minimizing sabot weight to ma-
ximizethe lethality of the round.

The efficiency of composite materials to reduce the weight of sabots was demonstra-
ted during the Armament Enhancoment Initiative (AEI) program [1] and [2]. In this pro-
gram, two new 120-mm Kinetic energy cartridges, the M829A 1 and the M829A2 variants,
were type-classified. The first variant was developed very rapidly using state-of-the-art
aluminum sabot technology. The sabot for the second variant was manufactured with gra-
phite fiber-reinforced epoxy material and represented a 30% sabot weight reduction from
the first variant (about 2.25 Ib). This weight reduction translated directly to increased
muzzle velocity for the projectile (approximately 60 m/s) and increased armor penetra-
tion at the target.

2. STRUCTURAL DESIGN

AsKE projectiles are accel erated forward, they can transfer on the order of 1.25 mil-
lion pounds of force into the subprojectile. Thisforce accelerates the projectile forward at
accelerations on the order of 75,000 g's. Thisinertial loading will fracture the penetrator
if it is not properly reinforced. Successful launches of monolithic, high density long-rod
penetrators were originally accomplished with single ramp sabots which were either
loaded from behind (so that the sabot and the subprojectile were loaded in compression)
[3] or from the front (so that the sabot and sub-projectile were loaded in tension). [4] de-
monstrated that the most efficient method of carrying these loads was through the use of
double-ramp sabots. In double-ramp sabots, the projectile is obturated (or sealed to the
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gun bore) from the center so that the back half is loaded in tension and front is loaded in
compression as shown in Figure 1. The thickness of the aft ramp, saddle, and forward
ramp regionsin the sabot are inversely proportional to the axial elastic modulus of the sa
bot material. Therefore, increasing the axia elastic modulus and strength of the material
alowsfor the thinner ramps and therefore lighter sabots.
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Figure 1. Axi-Symmetric view of a kinetic energy projectile. The major regions of the
sabot and their loading requirements are indicated.

Materials Selection. The selection of the best material for the sabot can then be made
on the basis of the highest ratio of strength and stiffness to density. Figure 2 is an Ashby
[5] diagram comparing the specific stiffness (stiffness divided by density) to the specific
strength (strength divided by density) for a series of engineering materials. Most monoli-
thic metals (steel, aluminum, and titanium) have relatively equivalent specific engineering
properties and fall in the center of the diagram. Fiber reinforced composite materials can
have significantly higher specific properties in the direction of the fibers than conven-
tional design materials. However, transverse to the fiber direction, the composites have
relatively poor engineering properties. To efficiently design structures with composite
materials for multi-axial loading, laminates are made with varying fiber orientation. This
alows the strength to be tailored in the necessary directions. Structural design of sabots
utilizing composite materials then requires an understanding of how composites carry
load, how failure occurs in composite materials, how the architecture of these materials
affects load transfer, and the important role of sabot geometry in ensuring efficient load
distribution thronghout the sabot.

Analysis of Composite Material Structures. The heterogeneity of laminated com-
posite structures and their inherent anisotropic properties make composites more difficult
to analyze than traditional isotropic materials. The analysis of laminated composite structu-
res is further complicated by the increased propensity for severe stress gradients to de-
velop within anisotropic materials. Failure prediction of laminated composite structures
must be based on the stress and strain states within the constituent lamina or plies. It is
therefore necessary to compute, with reasonable accuracy, the ply-level stress and strain
states throughout the laminated composite structure before any failure criterion isimple-
mented, upon which design decisions may be based.
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Figure 2. Diagram comparing the specific stiffness (stiffness divided by density) to the
specific strength (strength divided by density) for some engineering materials[5].

Ply-by-ply stress and strain calculations may be pursued through two distinctly dif-
ferent approaches. One obvious approach is to treat the entire composite structure as a
heterogeneous continuum, modeling each individual ply as a discrete material. Expe-
rience has shown that several finite elements through the thickness of asingle ply are ty-
pically required to achieve accurate results. For thick multilayered composite structures
(such asasabot), thisapproach is not realistic due to computational limitations.

To circumvent the difficulties associated with the detailed ply-by-ply analysis, a
“smearing-unsmearing” approach is used in the present analysis based on the numerical
model presented by [6]. This approach has been developed in a computer code entitled
LAMPAT 171. Using LAMPAT, representative sublaminate configurations in the sabot
are first identified. Sets of equivalent or effective homogeneous properties for these re-
presentative sublaminate configurations are then computed. This step isreferred to asthe
“smearing” of the properties. A typical structural analysisis then conducted, employing
the effective thermo-mechanical properties as input, to obtain the average stress and
strain distributions within the structure under the prescribed loading. At any local region
in the sabot, the ply-by-ply stresses and strains can then be obtained by solving the
laminated media problem with the average stress and/or strain values being applied as
local boundary conditions onto the representative sublaminate configuration. Thisstepis
referred to as the “unsmearing” of the laminate stress and strains. Once the ply-by-ply
stress and strain states are determined, an appropriate ply level failure criterion can be
applied to assess failure. In the LAMPAT code, this procedure is used throughout the
structure (i.e., for every element), ultimately providing structural performance or safety
margin contour plots. Thisprocedureisillustrated schematically in Figure 3.
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Figure 3. Smearing-unsmearing methodology for analysis of thick composite structures.

Failure Prediction. There are many ply-level failure criteria available for laminated
composite materials. These are reviewed in several publications [8], [9], and [10]. The
version that has been developed for design and analysis of composite sabotsis aversion
of the maximmum stress failure criterion [8] modified to acconnt for the effects of hydro-
static pressure on the compressive strength [11].

In the maximum stress failure criterion, the six stress components for each ply in the
sabot are compared to the operative failure allowables for those directions (in the three
principal directions, composites have separate failure allowables in tension and compres-
sion). For sabot analysis, this failure criterion was modified to account for the effects of
hydrostatic pressure on the compressive and shear strength allowables. The implementa-
tion of thefailure criterion is described more completely in[12].

Material Architecture. One of the advantages of composite materialsis that the pro-
perties can be tailored by changing the orientation of the material within the sabot to
match the given loading conditions. The aft ramp of the sabot is loaded in axial tension
while under high compressive stresses in the radial and circumferentia directions; axia
stiffness and tensile strength are important design parametersin this region. The aft bulk-
head is loaded in shear under hydrostatic compression. The forward ramp or saddle is
loaded in uniaxial compression, so this region requires high axial stiffness and uniaxial
compressive strength. The forward bourrelet or scoop of the sabot requires high global
shear strength to withstand the aerodynamic loads during sabot discard and radial com-
pressive strength to withstand the loads associated with in-bore balloting of the round.
The grooves of the sabot require high fracture toughness and shear strength to transmit
| oads between the sabot and the subprojectile [13].
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3. VALIDATION

The complexities of the design of accelerating ballistics structures comprised of
highly anisotropic laminated composite materials have been described. The technology
developed initialy focused on two classes of composite materials, nominally isotropic
particle- and whisker-reinforced materials in a magnesium alloy matrix and graphite
(carbon)-epoxy systems. The metal matrix solutions were not pursued once limitations to
fracture toughness and the resulting implications on weight were rationalized. The poly-
mer matrix solutions were quite successful and achieved program performance goals. A
parallel producibility program was executed, so that once the technology was proven,
production could be implemented rapidly. The approach used included amix of analytical
modeling and experiments such as the one shown in Figure 4, wherein the successful
Launch of afull-size projectile system is shown. Subsequent designs, using the fully de-
veloped LAMPAT analysis methodol ogies provided further advances resulting in reduced
sabot weight due to the selection of even better material architecturesand subtleimprove-
mentsin geometry.

- e !‘ i-"m;:'m- :ill t’ﬁ".- 3 h“;ft_,‘-ﬁ; . 'r.r = -';- : '.I;. -..J."..'

_‘...
1h1 [

Figure4. M829A2 projectile with the composite sabot separating from the sub-projectile.

4. CONCLUSIONS

The M829A2 cartridge was type-classifled and entered full production with the
worlds first and only known composite material sabot. From 1992 to 2000, it was one of
the largest users of a composite material system in the United States Department of De-
fense, using roughly 400,000 Ibs (180,000 kg) of graphite-epoxy prepreg annually. Pro-
duct quality has been extraordinary, and affordable. A major improvement in performance
was effected by a unique program that introduced new, high-performance materials into
the ballistician’stoolkit, and the technol ogy that emerged was successfully transitioned to
high-performance ordnance applications.
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