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Recent increasein the ballistic performance of high loadsidentified the rotating
band as the weakest link in the ballistic system. Finite Element Analysis of the
stress distribution in the rotating band and metall ographic analysis of fired cop-
per bands revealed the need for new materials. Three alternative materials nic-
kel, titanium and Carbon Fiber Reinforced Composite (CFC) were investigated
as substitution of the state of the art copper rotating band because of their me-
chanical and physical properties. Due to their physical properties, new proces-
sesfor joining the band on the projectile had to be devel oped. For nickel, anew
welding process especially designed for thin wall carrier projectiles was deve-
loped. As it was neither possible to weld titanium nor CFC on the projectiles,
new mechanical joining processes were developed. The titanium band was
joined by mechanical force through a press, while the CFC was applied by a
thermal shrinkage process. Beside the development of new joining technologies
for each material, the ballistic experiments showed, that al three different
materials are possible substitutions for copper rotating bands.

1. INTRODUCTION

Results of past studies have shown the necessity of finding new rotating band materi-
asfor large caliber projectiles with higher physical properties[1, 2]. In those studies it
became evident that current rotating bands, particularly in the case of high charges, di-
splayed limits as regards the resistance to heat and in the area of the ductile sealing beha-
vior. Also structural problems at rotating bands were reported in different studies[1]. The
goal of the current task, therefore, was to find possible future material alternatives for ro-
tating bands which have the potential in solving the actual problems.
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2. DEMANDS ON THE MATERIAL

2.1 Temperature Gradient Of A State-Of-The-Art Copper Rotating Band

Informations about the materia tempe-
rature gradients of arotating band during fi-
ring were obtained by metall ographic analy-
ses of fired rotating bands. The test
projectiles were fired from a M109 with the
Swiss Charge 10 and then recovered from a
sand wall and cut into flat samples. From the
metallographic analysis of the test samplesa
temperature distribution in the rotating band
was derived as shown in Figure 1. This ob-
tained temperature gradient has a good cor-
respondence with former studies[3].
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Figure 1. Temperature distribution in a
copper rotating band.

2.2 Mechanical Properties Simulation Of A Rotating Band In The

Barrel Cone

Another important parameter of the rotating band material properties are the dynamic
rotating band forming forces while the projectileisin the barrel cone. These forming for-
ces of a copper rotating band were investigated by analyzing the dynamic material for-
ming velocity and the plastic strain by FEM Analysis (M SC.Superforge).
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Figure2: Plastic strain.

As evident from Figure 2 and Figure 3,
the results of the simulation show that the
new rotating band material should have a
high material ductility together with a high
dynamic strength. Considering these requi-
rements, nickel, titanium and Carbon Fiber
Composites (CFC) were taken into consi-
deration as possible materials. In Figure 4
one can see the surface pressure and the
tensile strength of state-of-the-art rotating
bands in comparison with the three new
tested materials.
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Figure 4: Property area of rotating band
materials.
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3. EXPERIMENTAL

3.1 Preparation Of The Rotating Bands

The nickel rotating band was fixed to the projectile by awelding process on awelding
machine using awire of nickel grade 2. To increase the evenness of the nickel-steel inter-
face, welding voltage was increased from 27 to 33 V; wire feeding speed was varied from
7.5t0 9 a.u. and the welding speed was changed between 1 to 1.4 a.u.. To extract the heat
of fusion, a cooling device was developed which permitted specific cooling-down rates.
The subsequent heat treatment process was carried out in afurnace (Nabermultitherm N
11-HR), using an argon inert gas atmosphere. To determine the change in the microstruc-
ture, the time frame of 1 to 3 hours was investigated for the recrystallization process,
while for the hardening process atime frame of 3 to 6 hours was tested. After this, thero-
tating band was finished on aCNC turning machine.

For the titanium rotating band the material titanium grade 2 was used. Because of the
tendency of forming intermetallic phases it was impossible to find awelding process sui-
table for connecting the titanium with steel. Therefore a static pressing process was selec-
ted. Due to the difference in the crystal structure between copper (cubic face centered
with 24 glide planes) and hexagonal titanium (6 glide planes), however, it was necessary
to determine a new pressing process for the titanium rotating band. The material was
brought into ring shape on a turning machine and then statically pressed onto the projec-
tile by means of aradial press. After this, the rotating band was externally desurfaced on a
CNC turning machine.

For the CFC rotating band, a prepreg (Krempel company) cured by means of a stan-
dard autoclave process was used. Asthe structure geometry of rotating bandswas difficult
to process with CFC a new production process was developed by optimizing the inner
structure of the fibrous layers. For the last step of the production process we used a for-
ming device made from a sawn-off groove-field profile of a gun barrel into which the
CFC blank was pressed. In the subsequent shrinkage process the projectile was cooled
down with liquid nitrogen and then the CFC ring was slid ontoit.

3.2 Ballistic Experiments

The ballistic tests were carried out in afiring channel using a M 109 weapon under the
following environmental influences. temperature 10.9 °C, pressure 950 mbar, humi-
dity 88%, atmospheric density: 1159 g/m3. A piezo-type measured-value transducer of
AVL was used for the interior-ballistic measurement, installed on the action side of the
charge chamber. Standard photoel ectric cells of the AVL company were used for the ex-
ternal-ballistic measurement. Charge and projectile were moderated to 15°C prior to fi-
ring. The firing channel was vented for one hour after each shot. Firing tests with the
charges 5, 7, 9 and 10 were carried out for nickel, and with the charges 5 and 7 for tita-
nium. Testswith rotating bands of the diameters 157.5 mm and 158 mm were made on ac-
count of the changed forming behavior in the case of titanium. Firing tests with the char-
ges5 were carried out with CFC rotating bands.
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The assessment of the ballistic function was made with the aid of muzzle photos of the
projectile. For this purpose a digital short-period camera of type Ballistik Range SVR I,
set up 7 m after the barrel muzzle, was used. To permit viewing of the entire circumfe-
rence of the rotating band on the muzzle photo, two mirrors, each with 45° inclination to
the photo plane, were used. The following interior-ballistic standard parameters were me-
asured for the course of the gas pressure as a further assessment criterion: Maximum gas
pressure Pmax, Muzzle gas pressure Pmuzzle, and the interior-ballistic parameters t2,
t3 and t4. Additionally external velocities were measured to verify the interior parame-
ters.

4. RESULTS AND DISCUSSION

4.1 Nickel Rotating Band

To be ableto fix the nickel rotating band also on athin-wall cargo projectile it was ne-
cessary to develop a new welding process with optimized regularity of the nickel-steel
interface to realize aconstant wall thickness under the nickel welding on athin-wall cargo
projectile. Thiswork was done on amaraging steel thin-wall cargo projectile.

By optimizing the welding parameters and the heat extraction in the cooling device it
was possible to achieve a marked increase of the regularity of the nickel-steel interface.
The picture below illustrates the improvement of the characteristic value of regularity Rz.

nickel

Figure 5: Improvement of the nickel-metal interface regularity (Rz).

Asshown in Figure 5, Rz was reduced from 1.7 mm to 0.4 mm thus obtaining a better
interface between nickel and steel.

After welding the nickel onto maraging steel the projectile was subjected to a standard
heat treatment. After the heat treatment micro-bubbles were detected in the basic steel
material in the course of the material aging heat treatment process. | nvestigations showed
that the formation of the micro-bubbles depends on the cooling-down gradient during the
welding process. Therefore a heat treatment process was developed to modify the mate-
ria structure in such amanner that no further micro-bubbles were generated in the subse-
quent hardening process. The following pictureillustrates the effect of the material struc-
ture conversion process on the hardening, preventing the formation of micro-bubbles.
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Figure 6: Influences of the microstructure conversion process (left before, right after).

Suitability of the nickel rotating band was investigated by ballistic function tests. The
interior ballistic evaluation revealed for each charge, within limits of + 5 %, the same
course of gas pressure as the reference projectile equipped with a copper rotating band.
The muzzle photograph (fig. 7) of the test projectile fired with charge 10 shows a marked
improvement in the sense that structural edge melting as described for copper rotating
bandsisno longer observed.
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Figure 7: Projectile before (left) and after rotating band forming (right).

4.2 Titanium Rotating Band

During the development of the new  Eiws -
pressing process the test showed that only £ ars e
from 600 bar upwards the compl ete groove 3 s ; 4 ———
of the projectile isfilled by the titanium ro- E-nu. .

tating band (see Figure 8). :

Ballistic function tests were performed ~~ ~ Cplpinll
to investigate the suitability of the titanium Sere mii En ey i
rotating band. Considering the different s (1]
forming behavior of titanium, the principle
trials were carried out with rotating bands  Figure 8: influence of pressure on groove
of the diameters 157.5 mm and 158 mm. filling.
Both charges showed at diameter 157.5
mm that the maximum gas pressure was reduced on average by 4%, while having the
same muzzle gas pressure and no gas leakage. The muzzle photo shows anormal, adequa-
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tely formed rotating band without mechanical defects (fig. 9). With diameter 158 mm and
charges 5 and 7, the interior ballistic evaluation resulted, within limits of + 5 %, in the
same course of gas pressure as the reference projectile with copper rotating band. While
with charge 5 the muzzle photograph shows a normal, adequately formed rotating band,
with charge 7, small fragments (1-2 mm) detached from the rotating band thus indicating
the maximum functional diameter.

Figure 9: Projectile before (left) and after rotating band forming (right).
4.3 Carbon fiber-reinforced composite rotating band

Because of the low ductility of the CFC compared to copper, the barrels groove-field
profile can not be formed on the rotating band during firing. Therefore the weapon bar-
rel’s groove-field profile was applied to the CFC rotating band already during the produc-
tion. For correct positioning of the rotating band’s groove-field profile in relation to the
groove-field profile of the barrel during loading, a centering lug was provided on therota-
ting band, engaging in agroove of the weapon’sbarrel on loading (Figure 10).

For the production of the CFC rotating band specially adapted fibrous tissues were ne-
cessary to achieve a defined fiber orientation in relation to the dynamic load conditions
inside therotating band. Step by step the arrangement of the fibrous ti ssues was optimized
to obtain a circular structure with high elasticity, where the preprofiling of the groove-
field profilewas formed into the outer surface as shownin Figure 10.

ey’

Figure 10: Part of rotating band with cente-  Figure 11: Shrinking of the rotating band
ring lug. onasample.
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Aswelding or pressing of the CFC rota-
ting band onto the projectile was impossi- —
ble, athermal shrinking process was deve-
loped. The CFC ring was fitted on the
projectile by cooling down the projectile
jacket to —170°C before the CFC ring was g -
dlid in place as shown in Figure 11. After
warming of the projectile to room tempera-
ture, a positive and frictional connection
between the rotating ring and the projectile  Figure 10: part of rotating band with cente-
was obtained as shown in Figure 12. ring lug.

Short-time dynamic behavior of the
CFC rotating band was determined by firing tests. The interior ballistic evaluation revea
led areduction of the maximum gas pressure by 18% in comparison with the copper rota-
ting band. Apart from this, an increase of the muzzle gas pressure by 300% was recorded
in comparison with copper. Due to the prestructuring of the CFC rotating band the for-
ming force in the transition cone is substantially reduced, resulting in a premature gjec-
tion of the projectile already at low gas pressure.

5. SUMMARY AND CONCLUSION

While all three materials worked as rotating bands, one has to look at their perfor-
manceindividually.

In comparison with the copper rotating band, a marked functional improvement was
obtained with the nickel rotating band. In comparison with copper rotating bands the pro-
duced utility models displayed a markedly improved structure also in the case of highest
charges. The developed production process for nickel rotating bands will &l so solve other
rotating band problems on thin-walled carrier projectiles where numerous problems have
been observed sofar.

Concerning the titanium rotating band, the suitability was proven. The firing testsalso
showed that for future rotating bands of titanium the external diameter should be between
157.5mmand 158 mm.

The suitability in principle was also proven for the CFC rotating band. However to
avoid the premature egjection of the CFC-projectile an additional copper ring should be
placed behind the rotating band. This copper ring would be deformed during the firing
and increase the forming force in the transition cone while the ledge force would still be
transmitted by the CFC rotating band.
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