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We present a novel artificial neural network architecture for modeling the ball-
istic penetration of a single shaped charge jet in a realistic multi-cassette target.
After training on alarge enough database, the model can estimate the expected
residual penetration in different ballistic setups. In our model, a neural network
is trained to model the ballistic action of a single generic cassette. Such cas-
sette-networks are linked together to model the ballistic action of the multi-cas-
sette target. We call this Multi-Cassette Analysis (MCA). Here we assume that
theresidual penetration after one cassette is the reference penetration of there-
sidual jet for the succeeding cassette. An appropriate training method was de-
veloped for the MCA architecture, and preliminary results are presented. We
hope that such amodel may assist armor devel opersin making optimizations of
armor configurations and armor materials, and constitute an efficient armor de-
signtool.

INTRODUCTION

It is a difficult problem to model the ballistic performance of multi-cassette armor.
Different methods are used to overcome this difficulty, including semi-analytical models
[1], finite-difference numerical simulations[2] and of course experiments. Semi-analyti-
cal models are usually either over-simplistic or require parameter calibration. Finite-dif-
ference simulations require many parameter calibrations, cost considerable computatio-
nal resources and take alot of time. Experiments are expensive and destructive. Because
of these disadvantages, the above methods are not efficient for optimization, for example,
where many possible armor configurations must be considered, due to the large number
of relevant parameters. Given an existing experimental database, a preferable solution
may beto perform anintelligent regression on the empirical data.

Artificial neural networks are acommon tool for performing non-linear regression or
function approximation, especially when the parametric form of the function is unknown
and when the number of parametersislarge[3]. There are for example, interesting appli-
cations of neural networksin the field of material engineering [4] [5], but we have found
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no references considering terminal ballistics. It would be niceif such atool could be used
to provide armor devel opers with an approximation of theresidual penetration, Prgs, asa
function of the ballistic experiment setup parameters:

Pres =f (warhead parameters, cassettes parameters, setup geometry) QD

Finding a minimum of this function for a given warhead, under some practical cons-
trains, may be termed “the terminal ballistics problem” (regarding armor devel opers). We
find the naive use of asimple neural network for modeling the full ballistic problem to be
ineffective. Instead, we propose a new Multi-Cassette Analysis (MCA) architecture that
istailored to our needs. This model is capable of estimating the residual penetration of a
single shaped charge jet after penetrating a multi-cassette target, in a typical setup as
showninFig. 1.

] =

Figure 1: A typical ballistic experiment setup of a single shaped charge warhead against a
multi-cassette target.

MODEL ARCHITECTURE

In our architecture, athree-layer feed-forward neural network models the ballistic ac-
tion of asingle generic cassette. Thiskind of network consists of an input layer, a hidden
layer and an output layer. The layers are connected by weightsthat are the free parameters
of themodel. At the nodes of the hidden and output layers, anonlinear sigmoid functionis
activated on the weighted sum of the previous layer’s nodes. The network is trained by
adjusting the weights, so that its output approaches a specified desired value. The cas-
sette-network (Fig. 2) isfed with the appropriate warhead, cassette and geometry parame-
ters, and the network istrained to yield avalue close to the expected residual penetration
after the cassette. A number of identical cassette-networks are linked together to consti-
tute the M CA architecture, which modelsthe ballistic action of awhole multi-cassette tar-
get (Fig. 3). Thefirst cassette is fed with the warhead reference penetration, and the resi-
dual penetration after one cassette is used as the reference penetration of the residual jet
fed to the succeeding cassette. Other than that, the cassettes are assumed to be indepen-
dent. The model istrained to yield the experimentally measured overall residual penetra-
tion for alarge number of training examples. Our model is based on an assumption that it
issufficient to passforward only one historic parameter of thejet, which werefer to as pa-
rameter number one, in order to obtain a satisfactory description of the multi-cassette pe-
netration.
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Figure 2: The generic cassette-network.

Our approach of modeling the cassettes themsel ves by using a separate (though identi-
cal) network for each cassette has several advantages. First, the number of free parame-
ters of themodel isreduced, allowing the use of asmaller database for training the model,
or aternatively to increase the number of input parameters. Second, this realization of the
physical covariance of cassette action allows the investigation and understanding of the
action of a single cassette, and thus the description of armor composed of an arbitrary
number of different cassettes. Thisis similar to the shared-weights approach used in [3]
(regarding the T-C recognition problem). Finally, the MCA approach allows the incorpo-
ration of physical constraints between cassettes. In particular, we constrain the residual
penetration after the cassettes to be monotonically declining and independent of succeed-
ing cassettes, making the model more physically robust.
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Figure 3: The MCA architecture. Identical neural networks, represented by the “N”-s, are
used to model the different cassettes of the target.
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PHYSICAL DATA PREPROCESSING

We consider armor in which each cassette is made out of two metal plates and some
intermediate layer plate. In Table 1 are the physical parameters chosen to be the input pa-
rameters for the model. These were identified as the main parameters that influence the
ballistic phenomena. It isimportant to choose parameters that are continues physical vari-
ables and not discrete categories. Besides these parameters, we have for every shot in the
database the overall residual penetration measured in the experiment. We want to train
our model to yield this output for the appropriate input, up to some given tolerance. We
would like to work with arealistic tolerance, close to the empirical tolerance, in order not
to make thetraining processtoo hard and not to have over-training (learning of the noise).
With this intention, we chose the relevant tolerances as certain percentages of the diffe-
rence between the warhead reference penetration and the overall residual penetration. We
used adifferent percentage value for shots of large warheads (reference > 350 mm) and of
small warheads (100-200 mm) due to the different variances in their results. Where the
dataincluded severa shotswith identical input parameters, the residual penetrationswere
averaged (without reducing the number of these shots' occurrences), and the tolerance
was set to 120% of the maximum deviation from this average. As the warhead reference
penetration at the actual standoff was not always known, we have used the reference pe-
netration at some known standoff, forcing the model to learn the warhead' s standoff curve
aswell. Thisisnot ideal, however the model has enough input data to take this deviation
into account.

Table 1: Input parametersfor the cassette-network.

Category index Input parameter
Parameter number one Reference penetration
Warhead reference penetration
Reference standoff from virtual origin
Jet tip velocity
Jet tail velocity
Jet Breakup time
Radius of particulated jet
1* plate thickness
1" plate metal density
1" plate metal yield strength
2" plate thickness
2" plate material density
2" plate material parameter #1 (application dependant)
2" plate material parameter #2 (application dependant)
3“ plate thickness
3“ plate metal density
3° plate metal yield strength
Distance of cassette from virtual origin
Angle of cassette
Air gap after cassette

Warhead parameters

Cassette parameters

Geometry

813|333z 2 (2 [3|2[2]0[@|~|o|o | o |m] -
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Except for parameter number one, the input parameters of the training examples were
normalized to have zero mean and variance one. Parameter number one and the expected
residual penetration, which are not known for the intermediate cassettes, were scaled to
therange[—1, 1]. Principal component analysis may be applied to the normalized parame-
ter space, in order to find the linearly independent dimensions of greatest variance. Then,
dimensions of small variance can be neglected, reducing the original 20 input parameters
to 13-14 effective input parameters that take account of about 98% of the variance in the
data.

TRAINING SPECIFICS

A generic cassette-network is trained by back-propagation implemented with an in-
cremental gradient decent scheme. The cost or error function isdefined as

error = 1 (output - target)’ 2

where output is the network output (as a function of the inputs and weights) and target is
the desired output, which isin our case the expected residual penetration. Weight adjust-
ments are made in order to minimize this error, meaning to bring the output close to the
target. In the case of gradient decent, the adjustments are made in a direction opposite to
the gradient of the error function:

= weight ,, —77 derror

weight
Bl dweight ©)

where n is a given learning rate. In the incremental method, the network weights are
adjusted after each training exampleisfed to the network. Up till now everything is stand-
ard ([6] is a good reference for efficient implementation). When considering multi-cas-
sette armor, however, the question arises how a number of linked networks can be trained
using datafrom asingle example. The main problem is determining the targets of the cas-
sette-networks that are not the last cassette, because experimentally, the residual penetra-
tion ismeasured after the last cassette only. One approach to overcome the above problem
would be to start with targets initialized by, say linear estimation, and make adjustments
to theintermediate weights based on the overall error gradient, asfor example:
doverall error

target
Joutput

where the gradient is computed at the intermediate cassette-network output. Practically,
one can look at our linked networks, as a one large multi-layer network with many dis-
connected contacts, and make adjustments based on the overal error depending on the
last output and target only. Therefore, an alternative approach to (4) would be to calculate
al adjustments by regular back-propagation gradient decent (3) using the overall error, as
if we were indeed dealing with one large network, with no need for intermediate targets.
Undesirably, thiswould prevent us the possibility to constrain the training of intermediate
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cassette-networks. However, it can be shown that the exact same adjustments will take
placein our MCA architectureif theintermediate targets are set as
doverall error

new = OUtput s (5)

target
doutput

where again, output refers to the intermediate cassette-network output. This is since
(5) causes the gradient of the intermediate cassette-network error to be equal to the over-
all error gradient. Interestingly, this method was found superior to different variants of
adjusting intermediate targets by the former approach. Either way, training starts with the
last cassette-network, for which the residual penetration is known, moving backwards.
Anintermediate target is evaluated as explained above, and isdelimited to be smaller than
both the preceding cassette-network output and the warhead reference penetration, and
larger than both the succeeding cassette-network output and target. Then the respective
cassette-network is trained by regular gradient decent (3) using the cassette-network er-
ror. Since we do not want the training process of one example to be iterative, we set the
generic cassette-network to be the average of the adjusted cassette-networks of the cur-
rent example. This may be viewed as a shared-weights approach or alternatively as a
mini-batch session in the incremental scheme. A further improvement is made by delimit-
ing also the actual cassette-network output to be smaller than both the preceding cassette-
network output and the warhead reference penetration, and larger than the overall residual
penetration for training examples, or than zero for test examples or new examples.

The use of an incremental method rather than a batch method is a requirement of the
stochastic or adaptive nature of the data, which is due to the changes of intermediate input
and target values. In addition, it has the advantages of lower memory requirements, better
efficiency when there is a high amonnt of redundancy in the database, and its stochastic
nature can help prevent convergence to a local, rather than global, minimum. Separate
learning rates are used for input-to-hidden and for hidden-to-output weights, and they are
automatically adapted by the method of [7] which proved to be very effective in dealing
with the changing data. It was found very important to limit the minimum allowed learn-
ing rate. Weight decay in the method of [8] isused in order to maximize the generalization
capability of the model. A disadvantage of our approach is that our model may require
fine parameter tuning in order to achieve convergence of the learning process.

A training error threshold is set and it is gradually lowered each time that all training
examples' outputs are within its limits. The model is trained for examples with an error
larger then the current threshold or for which the intermediate output values are not
monotonically declining. By this, more emphasisis put on examples harder for learning,
helping the process to converge. However, a prior check should be done to exclude irre-
gular training examples that are not in consent with the rest of the database and could
deem convergence impossible. This can be done by counting for which examples the mo-
del does not yield satisfactory output a large number of times relative to the number of
training epochs. The training examples are shuffled to arandom order at the beginning of
each training epoch. Training is stopped when the model reaches the specified training
tolerance for all training examples, and when for each of them the intermediate output va-
[ues are monotonically declining.
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PRELIMINARY RESULTS

The model was implemented in C++ code. We studied an empirical database of 400
shots of different warheads against armor consisting of one to five cassettes of different
configurations. 10 irregular shots were excluded from the database after found difficult
for learning. Of the remaining, avalidation set of 7%—10% test shots, which do not parti-
cipate in the training process, were chosen randomly and were put aside. The remaining
training shots were learned up to atolerance of 6% for large warheads and 12% for small
warheads. The residual penetrations of the test shots were accurately predicted within a
tolerance of 7.5% for large warheads and 15% for small warheads. This achievement was
repeated many times.

In conclusion, our feasibility test has yielded satisfactory results that confirm the mo-
del’s generalization capability. It is clear that the quality of prediction depends on the de-
gree of difference of the examplesto be predicted from the training database, and thus de-
pends on the extent that the database covers the ranges of parameters of interest. We
therefore hope that aher training the model on alarge database it may serve as an efficient
armor design tool.
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