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INTRODUCTION

Explosive reactive armors (ERA) are mounted on military vehicles to protect them
against attacks with shaped charges. For people implementing this kind of explosive pro-
tections on tanks, as well as for their antagonists, it is important to have a precise know-
ledge of the initiation criterion of these ERA. However, for some types of explosives, it is
quite difficult to find data concerning the detonation threshold under impact by fast pro-
jectiles ; moreover, even for standard explosives like C4, the initiation values found in li-
terature may vary, due to different experimental geometries (e.g., explosive covered or
not [1]), or because of difficulties in making precise measurements (e.g., determination of
the shaped charge jet diameter).

So, we decided to perform a series of tests in order to get the initiation thresholds of
ERA containing one of the three following explosives: C4, DPX-14 or PBXN-110. We
were also interested in obtaining the threshold variation with the impact angle of the jet on
the reactive armor. As a last point, we investigated the influence of the jet density on the
initiation of an ERA.

After a short description of our experimental geometry, we shall present data related
to the effect of the impact angle on the initiation threshold of ERA-boxes filled with
PBXN-110. Then we shall describe results concerning the initiation thresholds of C4,
DPX-14 and PBXN-110 by jets of materials with by different densities. Finally, these ex-
perimental observations will be compared to the predictions of three theoretical models
for explosive initiation which can be found in literature [2,3,4,5,6,7].

We study the initiation sensitivity of ERA-boxes impacted by shaped charge
jets. Our work focuses on two main topics. On the one hand, we are interested
in the initiation threshold of the ERA when the impact angle of the projectile on
the box is varied. On the other hand, we try to determine the variation of this
threshold for different jet materials and filling explosives. We finally analyse
our experimental results in the light of three models predicting the threshold
dependence on the projectile density, velocity and diameter.
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EXPERIMENTAL TEST SETUP

The explosive reactive armor (ERA) used in the experiments described hereafter con-
sists of a 7 mm thick explosive sheet confined between two 2 mm thick steel plates. The
explosive is thus only slightly covered [1].

All experiments were performed with 50 mm / 60° shaped charges driven by PBXN-5.
The charge was used without casing. The liner had a constant thickness depending on the
material used: 1.4 mm for Cu, 1.6 mm for Fe, 3 mm for Al, and either 0.7 mm or 1.1 mm
for Ta liners. With the exception of the 1.1 mm Ta cone and the 3 mm Al one, the liner
thicknesses were chosen so as to get cones having approximately the same mass.

Figure 1: Experimental test setup. The shaped charge jet is slowed down by a mild steel
target of variable thickness h, positioned at a stand-off equal to 100 mm. The ERA-sand-
wich is located at a distance of 600 mm from the liner base. The jet is X-ray flashed three
times during its flight to the ERA. Behind the latter, at 1000 mm stand-off, a steel target
allows the measurement of the remaining penetration capability of the jet.

Figure 1 shows the experimental setup used to study the initiation threshold of reac-
tive armors. A shaped charge is fired and its jet slowed down by a mild steel target of vari-
able thickness; the outcoming remaining jet then impacts the ERA-sandwich. The box is
inclined so that the normal to its front surface makes an angle φwith the jet axis.

We studied three explosives: the well known C4, DPX-14 sheets and cast-cured
PBXN-110. The last one is an insensitive explosive which resists high impact velocities
up to 4 km/s without detonating. This is advantageous from an experimental point of view
since the shaped charge jet has to be only slightly slowed down by the first steel target. As
a consequence, one obtains a jet with a clean tip, and with well defined velocity and dia-
meter.

EFFECT OF THE IMPACT ANGLE

In order to study the effect of the projectile impact angle φon the initiation of reactive
armors containing PBXN-110, a shaped charge with copper liner is used. The critical ve-
locity is then determined for various angle φby varying the impact velocity of the copper
jet.
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Figure 2: Experimental results for the critical jet tip velocity vjet (left) leading to detona-
tion of an ERA filled with PBXN-110 as a function of the impact angle φ, and the deduced
value of the initiation threshold Icrit = vjet2 d (right). The curve corresponds to the fit (2).

Figure 2 presents experimental results for the critical jet tip velocity vjet which indu-
ces detonation of the sandwich with a probability of 50%. On the same figure, we have
also reported the critical value of the initiation criterion Icrit [1] defined by

Icrit = vjet2 d, (1)

where d stands for the diameter of the jet tip. It clearly appears that the angle φhas an im-
portant effect on the initiation of the ERA, the most sensitive case being a box placed per-
pendicularly (φ= 0°) to the jet axis. As the angle φ increases from 0° to 60°, the initiation
parameter Icrit increases from 70 mm3/µs2 to 100 mm3/µs2. In other words, the initiation
sensitivity decreases as the angle φ increases. The threshold Icrit is reasonably well appro-
ximated by the following function

Icrit(φ) = 74 · [ 1 + 0.4 sin(φ) ] mm3/µs2. (2)

This form is somewhat surprising; we expected a stronger dependency of the thres-
hold Icrit on the angle φ, like Icrit(φ) ≈ Io / cos(φ), in order to get a diverging value for Icrit
in the limit φ→ 90° (grazing impact angle). The numerical factor 74 mm3/µs2 is specific
to PBXN-110. It is however likely that the coefficient 0.4 in front of the angular function
is a mere geometrical factor which should remain constant for other types of explosives.

The previous data were obtained by firing charges against sandwiches filled with
PBXN-110. The increase of the initiation parameter Icrit(φ) with the impact angle φ was
fully confirmed by other experiments with charges fired against boxes filled with C4
(data not shown here).

INFLUENCE OF THE JET DENSITY AND OF EXPLOSIVE

This section is devoted to the presentation of results concerning initiation thresholds
of explosive armors when impacted perpendicularly by shaped charge jets of diverse ma-
terials. We compare our experimental data to the predictions of the three following ex-
pressions for the initiation. The first one, characterized by equation (3), has been propo-
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sed by Mader and Pimbley [3,4,5] ; the second one, described by (4), is due to Chick et al.
[6]; the last one, corresponding to equation (5), has been defined by Held [7,8].

IM = ( ρ / ρCu )  vjet
2 d, (3)

IC = ( ρ / ρCu )1/2 vjet
2 d, (4)

IH = { [ 1 + ( ρHE / ρCu )1/2 ] / [ 1 + ( ρHE / ρ )1/2 ] }2 vjet
2 d. (5)

In these expressions, ρHE stands for the high explosive density, ρCu for the density of
copper, ρ for the jet density, vjet for its tip velocity and d for its diameter. Since copper is
the most extensively studied element, we have scaled equations (3,4,5) in order to get in
each case the usual expression I = vjet

2 d when Cu is used as liner material; furthermore,
with this scaling, the three expressions have the same units, namely mm3/µs2. For a given
explosive, the value of the initiation thresholds IM, IC and IH defined by (3,4,5) should be
a constant, regardless of the impacting jet material.

The following tables present our experimental results for the three explosives C4,
DPX-14 and PBXN-110. Investigated liner materials are aluminum, copper, iron and tan-
talum. The critical jet tip velocity and diameter are determined on X-ray pictures. Due to
the difficulty to measure accurately the jet diameter, the values d listed below correspond
to the average tip diameter measured on consecutive X-ray pictures.
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High explosive C4
ρ = 1.57 [g/cm3]

Jet material
ρ

[g/cm3]
vjet

[mm/µs]
d

[mm]
IM

[mm3/µs2]
IC

[mm3/µs2]
IH

[mm3/µs2]

Al
Fe
Cu

2.70
7.86
8.96

2.90
3.24
3.39

5.7
4.4
3.4

14
41
39

26
43
39

31
44
39

Mean value of I : 31 36 38

High explosive DPX-14
ρ = 1.5 [g/cm3]

Jet material
ρ

[g/cm3]
vjet

[mm/µs]
d

[mm]
IM

[mm3/µs2]
IC

[mm3/µs2]
IH

[mm3/µs2]

Al
Fe
Cu

2.70
7.86
8.96

2.55
2.50
2.83

7.0
5.3
3.7

14
29
30

25
31
30

30
32
30

Mean value of I : 24 29 31

High explosive PBXN-110
ρ = 1.67 [g/cm3]

Jet material
ρ

[g/cm3]
vjet

[mm/µs]
D

[mm]
IM

[mm3/µs2]
IC

[mm3/µs2]
IH

[mm3/µs2]

Al
Cu
Ta

2.70
8.96

16.60

4.15
4.49
4.87

4.6
3.5
3.6

24
71

158

43
71

116

51
71

101

Mean value of I : 84 77 74

 



If the constancy of the initiation threshold for a given explosive is used as a criterion
to discriminate the three proposed expressions for I, then our measures suggest that the li-
near dependence of Mader’s IM on the density of the jet is too strong; better results are
achieved with Chick et al.’s threshold IC or with Held’s IH. On the basis of our experi-
mental observations, none of these two last threshold forms can be preferred to the other
one. However, the data spread is slightly lower with Held’s threshold IH, and last but not
least, the theoretical derivation [8] of the density dependence of IH is very appealing.

CONCLUSION

Experimental results have been presented concerning the angular dependency of the
initiation threshold of explosive reactive armors, as well as its changes with the density of
the impacting jet.

As intuitively expected, the initiation threshold of an explosive sandwich increases as
the impact angle φ increases, the most sensitive situation being therefore an impact nor-
mal (φ= 0°) to the surface of the reactive box. According to our data [Eq. (2)], one should
expect an increase of 40% of the threshold when φgoes from 0° to approximately 80°.

The influence of the impacting jet density is clearly observable in the data presented
above. The experimental results are reasonably well fitted either by Chick et al.’s relation
IC ≈ ρ 1/2 vjet

2 d or by Held’s equation IH ≈ vjet
2 d / [ 1 + ( ρHE / ρ )1/2 ]2 ; for the three ex-

plosives investigated here, the best agreement is obtained with Held’s expression IH.
The initiation of explosives by fast projectiles depends among other things on its

confinement [9], as well as on the existence of air gaps between the explosive and the
front cover plate. This may explain the difference between our threshold for C4, IH = 
38 mm3/µs2, and the one given in [8], IH = 64 mm3/µs2. Another difficulty which could
explain such differences is linked to the measurement of the jet diameter on X-ray pic-
tures. Let us however mention that they were consistently measured in the experiments
presented above. As a consequence, if it appears that the threshold value for one of the ex-
plosives studied here should be modified by a factor λ, then the critical values of the three
explosives should be scaled with the same numerical correction factor λ.

As a conclusion, let us state that the most favorable materials to defeat reactive armors
without initiating them are those characterized by a high density. For a given liner mass,
jets of high density materials are quite thin compared to those of lighter elements. This al-
lows a higher tip velocity. Furthermore, such dense jets have better penetration capability
in the plates which usually cover reactive armors. This tendency was observable in our
experiments: at initiation threshold, the critical jet tip velocity of tantalum is about 10%
higher than the one of a copper jet; the same remark is valid for copper and aluminum jets.
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