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A NUMERICAL INVESTIGATION OF TOP-ATTACK
SUBMUNITION IMPACT ON STEEL TARGET

M. Jha and P.K. Roy

Armament Research and Devel opment Establishment, Pune 411021, INDIA

The normal and oblique impacts of top-attack submunition on steel target are
analyzed with a 3D explicit finite element method. A bilinear material constitu-
tive behavior with isotropic hardening is assumed. The impact to detonation
timelag is estimated and structural deformations of the submunition are moni-
tored. The detonation time lag is found to increase exponentially with the obli-
quity of impact and large structural deformations are predicted to occure before
onset of detonation. The reduced stand-off distance as well asimproper jet for-
mation due to the large asymmetric structural deformation result in the reduced
terminal performance of the submunition.

1 INTRODUCTION

Top-attack submunitions are being increasingly used these days in a large variety of
cargo ammunitions starting from the mortar bombs and gun shells to the artillery rocket
warheads. While the primary kill mechanism of the submunition is the hyper velocity jet
produced by the lined hollow charge, the blast and fragmentation generated by explosion
cause the anti-personnel and antimaterial secondary effects. These submunitions are pri-
marily used against the tanks, armored personnel carriers, infantry combat vehicles, me-
chanized infantry formation and land troop concentrations. A large number of submuni-
tions are carried in the bomb, shell or warhead and they are dispensed in ar over the
target. The submunition has amechanical fuze, which gets armed after gjection of submu-
nition from the carrier shell and functions on impact of the submunition with the ground
or thetarget. A great deal of research work has gone into improving the efficiency of top-
attack submunition and anearly optimized design of submunition has been evolved under
the name Dual Purpose Improved Conventional Munitions (DPICM). While the DPICM
exhibits excellent terminal performance in static tests, its performance is considerably re-
duced under dynamic conditions. The dynamic performance of top-attack submunition
can be assessed experimentally for oblique as well as normal impact by launching the
submunition from a gun against the target plate kept at desired orientation; but, the above
experimental study can not monitor the striker movement and the exact state of submuni-
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tion before detonation. Hence, knowing reason for degraded dynamic performance of the
submunition remains osbcure. Another possible alternative for developing useful insight
into the problem is the numerical simulation of the event. Numerical methods are capable
of attacking the entire set of field equations and can accurately model transient pheno-
mena. But, they are still approximate in nature; mostly due to errors associated with un-
certaintiesin the material constitutive description. It isimportant to add here that despite
limitations of modeling sophisticated constitutive equations to characterize material be-
havior, numerical results for deformation fields often bear close resemblance to those
found experimentally.

In thiswork, athree dimensional numerical analysis of submunition impact on a steel
target has been carried out. The study is aimed at investigating the impact induced struc-
tural deformation of the submunition and finding the possible reasons for reduced termi-
nal performance under dynamic conditions. Numerical simulations of submunition im-
pact have been performed with the help of LS-DYNA3D [1]. It isaLagrangian non-linear
explicit finite element code that is widely used for modeling lower to hyper velocity im-
pacts. A frictional surface-to-surface contact and isotropic hardening bilinear elastic-plas-
tic material model have been used in the analysis. Normal and oblique impacts, each with
animpact velocity of 150 m/s have been considered for computational study.

2 THE COMPUTATIONAL MODEL

A section model of the top-attack submunition depicting internal details is shown in
Fig. 1(a). Asshownin Fig. 1(a), fuze of the submunition isacomplex assembly of several
tiny parts, which need not be modeled for finite element analysis. As such, a stepped hol-
low cylinder with a striker replaces the fuze in the finite element model. The size and
mass of the cylinder has been kept similar to that of the actual fuze. A discretized half-fi-
nite element model of the submunition is shown in Fig. 1(b). The discretization of conti-
nuum is performed with 99732 8-node brick elements.

(b}
Figure 1: (a) Section model of BAT38. (b) Finite element model.
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A high strength hardened alloy steel has been considered for the submunition body as
well as for the target. The elastic-plastic responses of the steel and copper liner are mo-
deled by using a bilinear isotropic hardening constitutive behavior within the framework
of infinitesimal displacement gradient Jo-flow theory. Thus, the yield surface in the stress
spaceisgiven by,

1 ol
QS = 581']‘81']' — ?y (l)
In egn.(1), the deviatoric stress tensor s is obtained from the Cauchy stress tensor oj;
by:
. 1
Sij = 0ij — 30k 2)

Thecurrent yield stress oy isafunction of plastic strain and obeystherelation:
oy = 0, + E,E° (3)

where g istheinitial yield strength, ePisthe effective plastic strain

t /9 \1/2

v :/0 (—ge?jsﬁ-’j) dt 4

| Part | plkg/m®) | E (GPa) | v |o,(MPa) | E;(MPa) | p, [ pa |
Target and body 7820 207 0.29 1235 7730 0.15 | 0.1
Copper liner 8820 247 0.29 200 00.00 - -
Explosive 1700 28 0.4 | Elastic - - -
Fuze 5207 207 0.29 | Elastic - - -
Striker 13603 207 0.29 | FElastic - - -

Table 1: Material properties.

and Ep isthe plastic hardening modulus in terms of elasticity modulus E and tangent mo-
dulus E¢
EFE,

T E-E 5)

EP

Thetotal strain ratefollowsthe el astic-plastic decomposition:

(6)

s .p
i = 5;7‘ + 52'j

Kreig and Key [2] formulated this model and the implementation in LS-DYNA3D is
based on their paper. Asthe material isvery moderately strain rate sensitive, the strain rate
effects are not considered in the analysis. All balance equations have been integrated with
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atime step At = 7.616 x 10~9s, which was decided by the code. The materials for explo-
sive and fuze are considered to be linear elastic. Results presented in this paper are for the
material propertiesgiveninTab. 1.

3 RESULTS

The BAT38 DPICM top-attack submunition has been considered for analysisin this
work. The submunition weighs 220 grams and is aerodynamically stabilized by means of
aclip-ribbon system attached to the fuze striker. The fuze gets armed when the submuni-
tion is gjected from the carrier structure and the aerodynamic pull exerted on the ribbon
stabilizer keepsthe striker away from the detonator. On impact, the striker movesforward
inthe fuze cavity dueto itsinertiaand pricksthe detonator. The impact to detonation time
primarily depends on the impact velocity and the orientation of the submunition at the
time of impact. The prime concerns of this study are the estimation of impact to detona-
tion timelag and the structural deformation of the submunition during thislag period. The
numerical experiments were conducted on 25 mm thick steel target that simulates the top
of atank. Four impact orientations of the submunition, namely 0°, 10°, 20° and 30° with
thetarget plate normal, each with an impact velocity of 150 m/swere considered for com-
putational study. As the gun launched cargo ammunitions have usualy very high spin
rates, the submunition was assumed to be spinning with arate of 1250 rad/s.

t=00s t=24E-06 s

Figure 2: Deformed shapes of the submunition in normal impact.
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The snap shots of structural deformations of the submunition at three different time
intervals during normal impact are shown in Fig. 2. Large deformation resulting in bulg-
ing of the body is predicted at the interface location of the body and liner. The above
structural instability is caused by the presence of groovesin the body, which are required
for peening of the liner into the body. However the submunition maintains a symmetric
structure, the effective stand-off for the submunition is considerably reduced. Approxi-
mately 20% reduction in stand-off distance has been predicted for the normal impact.
Thus the jet penetration of the lined charge will be less in dynamic case as compared to
that in the static.

t=36E-06s t=236E-06 s

t=76E-06s t=76E-06 s

z 3 [
= ] [ — I ] —

t=128E-06 s t=128E-06 s

Figure 3: Deformed shapes of the submunitionin 10° oblique impact.
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The computed structural deformations of the submunition at three different time inter-
valsduring a10-degree oblique impact are shown in Fig. 3. Thefront views of the submu-
nition are shown in the left column while left-hand side views are shown in the right co-
lumn. Only half part of the fuze has been shown in order to depict the striker movement
clearly. The snapshot at t=128 microseconds corresponds to that just before the detona-
tion. Considerable structural deformation is predicted before the detonation of the explo-
sive charge. As expected, the deformation of the body is highly asymmetric and aso lar-
ger compared to that in the normal impact. Thus, not only the effective stand-off distance
for the jet is reduced but also the symmetry of liner is disturbed by oblique impact. Both,
the liner asymmetry and reduced stand-off, contribute towards the reduced terminal per-
formance of submunition.

The computed time histories of the striker positions with respect to the detonator are
plotted in Fig. 4(a) for three impact orientations. We notice in Fig. 4(a) that the fuze
moves as a rigid body for about 20 microseconds and remains unaware of the impact
event. As can be easily inferred from the average slope of the curves, the sliding velocity
of the striker gets considerably affected by the orientation of the submunition at impact
and reduces with increasing obliquity of impact. The time lag between the impact and de-
tonation is obtained as the time corresponding to the zero striker distance. The impact to
detonation time lag for different angles of oblique impact is shown graphically in Fig.
4(b). We find that the impact to detonation time increases exponentially for oblique im-
pacts. Hence, the striker hits the detonator with less relative velocity in oblique impact
and energy imparted to the detonator may not be sufficient to initiate detonation. Large
numbers of duds reported in the literature for top-attack submunitions may be attributed
to the above reason.
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Figure 4. (a) Striker position. (b) Impact to detonation timelag.

1088



ANumerical Investigation of Top-Attack Submunition Impact on Seel Target

4 CONCLUSIONS

The normal and oblique impacts of top-attack submunition on steel target are ana-
lyzed numerically with the help of LS-DY NA, a3D explicit finite element code. A bilinear
elastoplastic material constitutive behavior with isotropic hardening has been used. The
impact to detonation time lag is estimated for four impact angles. In al cases, the structu-
ral deformations of the submunition are monitored till onset of detonation. The detonation
time lag is found to increase exponentially with increasing angle of impact and larger
structural deformations are predicted to preceed detonation for obliqueimpacts. Thelarge
asymmetric structural deformation resultsin the reduced stand-off distance aswell asim-
proper jet formation. The effects on the terminal performance parameters, such as stand-
off distance and symmetry, are found to be the minimum for the normal impact and in-
creases substantially for the oblique impacts. The results of simulation suggest that afuze
with the minimum impact to detonation time lag should be used for achieving the maxi-
mum terminal performance.
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