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BACKGROUND

Recent comparisons between predictions from the FATEPEN penetration computer
code and penetration test results for compact cylindrical fragments weighing between 1
and 10 grains revealed that the model generally over-predicted post-perforation residual
velocities for these very small fragments by 10–20% [1]. Further analysis indicated that
the residual velocity prediction errors derived primarily from under-predicting the ballis-
tic limit velocities for these small fragments. The ballistic limit velocity, V50, is the im-
pact speed at which a particular penetrator has a 50% probability of perforating a particu-
lar target and is determined experimentally by performing a prescribed series of ballistic
impact tests designed to bracket the minimum perforation velocity.

The FATEPEN ballistic limit velocity model derives in part from ballistic limit velo-
city test data for compact (L/D=1) cylindrical steel Fragment Simulating Projectiles
(FSP’s) impacting a variety of metallic and non-metallic plates at various impact obliqui-
ties [2]. The V50 formulas correlate these data as functions of the normalized plate thick-

Ballistic limit velocity data for steel cylinders perforating thin steel and alumi-
num plates indicate that ballistic limit velocities, for geometrically similar im-
pacts, increase with decreasing fragment size below about 40 grains. This paper
presents the results of recent ballistic limit velocity tests to confirm the size ef-
fect and the results of numerical simulations to determine if the CTH wave
code with currently available material models can replicate the test results. The
experiments involved steel spheres ranging in size from 12.7 mm down to 
1.6 mm impacting aluminum plates with a normalized thickness, T/D, of 0.5.
The current results confirm a size effect for the spheres, but it is not as strong as
indicated by the cylinder data. The CTH numerical simulations reveal that the
strain rate dependencies in the Johnson-Cook strength and fracture models for
aluminum result in a predicted size effect for the spheres which is much smaller
than that indicated by the current tests.
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ness, T/D, the slenderness ratio, L/D, of the cylinder, and the impact obliquity. This func-
tional dependence follows from the hypothesis that the ballistic limit velocity for a parti-
cular penetrator and plate corresponds to a specific limit energy (i.e., impact energy per
unit volume of target material). As such, the current V50 model presumes that geometric
similitude applies in the sense that the magnitude of V50 does not depend on the absolute
size of the penetrator and target but only on the relative target thickness (T/D) and pene-
trator shape (L/D). This formulation does not recognize any time or rate dependencies in
either the penetrator or target strength and failure characteristics. 

Mascianica’s ballistic limit velocity data compilation for steel and aluminum plates
includes data for FSP’s weighing from 1.35 to 830 grains [2]. A comparison of V50 values
for the same T/D across fragment sizes revealed a size effect wherein the ballistic limit
velocities of the L/D=1, steel cylinders impacting steel or aluminum plates (presumably
end-on impacts) with a fixed normalized thickness (T/D) increase with decreasing frag-
ment weights below about 40 grains. The corresponding ballistic limit velocities for the
larger fragments were found to decrease only slightly with increasing fragment size from
40 to 830 grains. Before modifying the FATEPEN formulas, it was decided to experimen-
tally and computationally confirm the size effect because of uncertainties in the impact
orientations associated with the smaller FSP V50 values. 

BALLISTIC LIMIT VELOCITY TESTS

To avoid difficulties in achieving (and measuring) consistent impact orientations for
very small cylinders, steel spheres were selected to confirm the ballistic limit velocity
size effect. Stainless steel spheres (SAE/AISI 316) with diameters of 1.59, 3.18, 6.36,
9.53 and 12.7 mm (weights = 0.26, 2.0, 16.3, 55.9 and 131.8 grains) were impacted
against 2024-T3 aluminum plates with thicknesses of 0.81, 1.58, 3.18, 4.78 and 6.25 mm,
respectively. The resulting normalized plate thicknesses, T/D, ranged from 0.49 to 0.51.
The hardnesses of the spheres ranged from Rc 25-39. The average plate hardnesses were
measured at BHN 130, 144, 152, 110, and 152 in order of average increasing plate thick-
ness (values converted from Rockwell K). The higher values are well above the expected
nominal hardness of BHN 120 for 2024-T3 and additional hardness tests are planned
using a Brinell hardness tester to confirm the results.

Test measurements included impact and residual velocity by means of two pairs of or-
thogonal flash X-rays. To aid in determination of the ballistic limit velocities, the target
plates were mounted in a lightweight (16 lbs.) ballistic pendulum to record the impact or
penetration impulse transmitted to the targets. The post-impact penetrators and target de-
bris were soft recovered in polyglycol.
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NUMERICAL SIMULATIONS 

The Eulerian Finite Difference wave code CTH [4] was used to simulate the 1.59 mm
and 12.7 mm steel sphere impact tests to determine if the current material models could
replicate the test results and to gain further insight into the source of observed scaling ef-
fects. Both calculations used the Johnson-Cook strength and fracture models. The publis-
hed values for the material dependent parameters in the model are listed in Table 1 for the
steel spheres and aluminum plates. It is noted that the A and B coefficients for the alumi-
num plates were increased by 25% for the simulations to reflect the higher than published
average hardness values measured for the plates.

Table 1: Constants for Johnson-Cook Srength and Fracture Models [4]

The size scale factor between the 1.59 mm and 12.7 mm spheres is 8. Assuming that
the strains for these geometrically similar impacts will be identical, the strain rates for the
1.59 mm simulations can be expected to be about 8 times that for the 12.7 mm simulations
due to the shorter penetration time scale. The yield strength for the aluminum will incre-
ase by only 3%, and the strain to failure will increase by only 2% for the eight-fold decre-
ase in scale. 

TEST RESULTS

Fig. 1 contains close-up views of sectioned plates for impact speeds just below and
just above the ballistic limit velocity for each of the stainless steel sphere sizes. The post-
perforation spheres and plate plugs corresponding to the impacts above the V50 values 
are shown below the corresponding sectioned plates. It can be seen that the spheres perfo-
rated with no measurable deformation. At the impact speeds just below the V50, the spheres
imbedded and rebounded from the front surface producing a polished hemispherical cra-
ter, and they also ejected a plug very nearly identical to those shown in Fig. 1 for the im-
pact speeds just above the V50. The thickness of the plate plugs nearly match the thick-
ness of the plates. In general, the macroscopic damage characteristics across the 8-fold
size variation are quite similar. The only apparent size effect in Fig. 1 is that the diameter
of the plate plugs appear to approach the diameter of spheres as sphere diameter decrea-
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Material A
(dynes/cm2)

B
(dynes/cm2) n C m

2024 Aluminum
(Published Values)

2.65 x 109 4.26 x 109 0.34 0.015 1.0

2024 Aluminum
(Used in Simulations)

3.31 x 109 5.33 x 109 0.34 0.015 1.0

4340 Steel 7.92 x 109 5.10 x 109 0.26 0.014 1.03

Material D1 D2 D3 D4 D5

2024 Aluminum 0.13 0.13 -1.5 0.011 0.0
4340 Steel -0.80 2.1 -0.5 0.002 0.61



ses. The ballistic limit velocity test results are plotted in the penetration outcome graph in
Fig. 2, and the V50 values for each sphere size are also tabulated in Fig. 1. The current
sphere ballistic limit velocities normalized by the ballistic limit velocity for the 12.7 mm
sphere are plotted in Fig. 3 where they are compared with similar normalized values for
the cylindrical FSP’s. The results in Figs. 2 and 3 confirm a clear size effect on ballistic li-
mit velocity for the spheres, albeit a weaker one than that indicated by the FSP data in Fig.
3. An analysis balancing the shear work of plate plugging with pre-impact kinetic energy
indicates that the observed growth in the plate plug diameter to sphere diameter could
easily account for the observed increases in V50.

Figure 1: Sectioned plates and post-penetration spheres and plate plugs for stainless steel
spheres impacting 2024-T3 aluminium plates at speeds slightly above (top) and below
(bottom) the ballistic limit velocity, V50. (note: images have been magnified to the
apparent size to facilitate the discernment of size effects in the damage morphology.)
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Figure 2: Ballistic limit velocity test re-
sults vs. fragment size, stainless steel
spheres vs. 2024-T3 aluminium plates
(T/D =0.5)

NUMERICAL SIMULATIONS RESULTS

Fig. 4 contains CTH simulation results in the form of split images of the 12.7 and 
1.59 mm spheres at the same scaled time. The initial velocity was 386 m/s (the experi-
mentally determined value of V50 for the 12.7 mm sphere). It can be seen that the two
simulations are in close agreement with regard to penetration depth and plate plug forma-
tion at the scaled times. Comparison with Fig. 1 shows that the simulation results exhibit
many similarities to the recovered test specimens. However, there is no discernable pre-
dicted growth in the plate plug diameter with the decrease in size scale. The graphs in Fig.
5 compare the strain rates (in the plates) and sphere velocity time histories for these simu-
lations. The Lagrange tracer data were recorded at the midpoint of the plate, one-half pro-
jectile radius from the central axis, where shear banding is most likely to occur and at the
center of the sphere. The time scale for the smaller sphere results was expanded by a fac-
tor of 8 to facilitate comparisons at the same relative penetration depths in the two plates.
As anticipated, the equivalent plastic strain rate of the larger plate is 1/8 that of the smal-
ler. The predicted residual velocities for the 12.7 mm and 1.59 mm spheres were determi-
ned to be 113 m/s and 108 m/s, respectively. These values are consistent with the predic-
ted strain rate differences and our initial expectations regarding the relatively weak
influence of strain rate effects on the penetration results.
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Figure 3: Ballistic limit velocity size effect for
steel cylinders and spheres vs. aluminium pla-
tes (T/D=0.5)



The CTH residual velocity predictions are plotted in Fig 6 where they are compared
with the test results for the two spheres and with the following analytical model for pene-
tration without mass loss [5]

(1)

where Vr is the residual velocity, Vo is the impact velocity, V50 is the ballistic limit velo-
city, M is the penetrator mass, and m is the intact plate plug mass.

The analytical predictions presume that the plate plug mass (m) is equal to the plug
mass measured in the tests, and the values of V50 are measured values (Fig 1). The
analytical model predictions provide a rational method to estimate the expected differen-
ces in CTH V50 predictions corresponding to the CTH Vr predictions. The V50 test
results reveal a 10% increase in the ballistic limit velocity for the smallest sphere (1.59
mm). The estimated increase in the V50 value for the 1.59 mm sphere based on the CTH
Vr results and Equation (1) is only about 1 % or 1/10 the observed size effect.

Figure 4: CTH numerical simulation results for the 12.7 mm sphere at 30 µ-sec (left) and
1.59 mm sphere at 3.75 µ-sec (right) impacting aluminium plates (T/D386 m/s. All di-
mensions of the 1.59 mm sphere and plate multiplied by a factor of eight to facilitate di-
rect comparisons.
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Figure 5: CTH time history plots of equivalent plastic strain rate in plate (left) and sphere
velocity (right). Values of time for 1.59 mm sphere multiplied by a factor of eight.

Figure 6: Normalized residual velocity predictions compared with test results for the 12.7
mm and 1.59 mm spheres impacting aluminium plates (T/D=0.5)
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CONCLUSIONS

The ballistic limit velocity test results for steel spheres presented herein confirm the
existence of a size effect wherein V50 values for a constant normalized plate thickness in-
crease with decreasing sphere diameter, but the effect is not as dramatic as that indicated
by the Mascianica data for steel FSP’s. The cylinder data indicate 30–60% increases in
V50 values as fragment weight falls below 2–3 grains while the V50 values for spheres
only increase by about 10%. Work-energy considerations indicate that observed increases
in the plate plug diameter to sphere diameter ratio with decreasing size scale could ac-
count for the size effect for the spheres. The CTH numerical simulations do not predict
the increase in the plate plug diameter ratio with decreasing size scale. The CTH results
further indicate that the current strain rate dependencies incorporated in the Johnson-
Cook strength and fracture models only account for a 5% increase in the residual veloci-
ties and a 1% increase in estimated V50 values with an 8-fold decrease in sphere size. It is
possible that the remainder of the size effect derives from less damage accumulation (e.g.,
void growth) in the plates over the shorter penetration times associated with the smaller
size scales [3]. A time dependent damage model might also account for the growth in the
relative plate plug diameter and also explain why cylinders, with higher plate shear strain
gradients, experience a larger size effect than the spheres. 

It is recommended that a similar series of ballistic limit velocity tests be performed
with steel cylinders and aluminum target plates with measured hardness values to confirm
the size effect evident in the Mascianica FSP data and that both the sphere and cylinder
target plates be sectioned and examined microscopically for variations in microscopic
damage accumulation with decreasing size scale. 
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