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REFERENCE CORRELATIONS FOR TUNGSTEN LONG RODS
STRIKING SEMI-INFINITE STEEL TARGETS

R. Subramanian and S. J. Bless

The Institute for Advanced Technology, 3925 W, Braker Ln., Austin, Texas 78759, USA

Several analytical forms are proposed for empirical correlations of normalized
penetration depth (P/L) in semi-infinite targets. The functional forms are based
on the widely accepted Lanz-Odermatt equation. The modifications alter the
transition to the hypervelocity asymptote and add a scale-dependence term.
The equations are fit to a compilation of tungsten long-rod data I mplications of
theresulting parameters are discussed.

INTRODUCTION

Empirical correlations for normalized penetration depth (P/L) as afunction of impact
velocity (v) are essentia in systems studies and the evaluation of complex armors or
novel penetrators. For eroding penetrators, one functional form that has enjoyed recent
popularity is atwo parameter version of the Lanz-Odermatt function [1]. This function
provides a reasonable fit to the observed trends over a wide velocity range and the para-
meters can berelated to material properties.

In this paper we propose several modified forms of the Lanz-Odermatt function. Two
forms add one parameter, one which altersthe transition from lower to higher velocity be-
havior and one which adds a correction for scale-dependence. These two forms are then
combined to yield afour parameter function that we use to compute reference penetration
in our laboratory. Parameters for these functions are computed for a compilation of labo-
ratory scale datafor tungsten rod penetratorsfired against armor steel targets.

ANALYTICAL FORMULATION

It iswell known that the normalized penetration (P/L) of rod projectiles as afunction
of impact velocity (v) follows an S-shaped curve. Thereis a threshold at which penetra-
tion begins. Thereis an inflection point beyond which the rate of increase of P/L decrea-
ses. Finally, thereisahigh velocity plateau, usually called the hydrodynamic limit.
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The Lanz-Odermatt function was originally proposed in [1] as a semi-empirical func-
tion for the ballistic limit thickness of an oblique plate as a function of impact velocity,
penetrator L/D, plate obliquity, and material properties. Four empirical parameters were
used in this function, although for the case of high aspect ratio rods (L/D>20) impacting
zero-obliquity plates only a single velocity scaling parameter was required. The upper
limit of the function in this case was assumed to be the hydrodynamic limit derived from
theratio of densities.

The success of thisform led to its use as a correlation for normalized penetration (P/L)
into semi-infinitetargets. Typically it is presented as atwo parameter empirical equation:

P/ L= Aexp[—(b/ v)?] (1)

The parameter A represents the limiting value of normalized penetration at high velo-
city and depends on L/D and the ratio of densities. The parameter b is a characteristic ve-
locity. These parameters may be related to mechanical properties of the penetrator and
target as described in [1,2]. Our motive in modifying this widely used function is that it
failsto accurately fit tungsten rod data over the entire velocity range of interest to our in-
stitute.

Generalized Lanz-Odermatt

Our first modification, which we call a Generalized L-O function, allows the velocity
exponent to vary asathird parameter to the function:

9= Aexp[—(b/v)] @)

Here"g" represents normalized penetration (P/L). The primary advantage of thisform
is that the transition between the low velocity trends near the inflection point and the
higher vel ocity plateau becomes adjustable. Fig. 1 showsanormalized form of thisfunction
in which g/A is plotted as a function of normalized velocity v/b. The curves have a com-
mon value /e at a normalized velocity of unity with the exponent ¢ acting to expand or
compress this function about this point. This parameter therefore affects the slopein this
steep region of the function. The slope at this common point is equal to c/e. However, it
should be noted that the inflection point (i.e., the point of maximum slope) occurs at a
lower normalized vel ocity that is dependent on the value of c.
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Figure 1. Generalized Lanz-Odermatt fit.

Scale-dependent Lanz-Odermatt

The existence of scale effects is well-establishod and can be significant [3]. For a
fixed L/D penetrator, normalized penetration (P/L) isreduced at smaller test scales. Strain
rate effects or flow stress have been shown to contribute to this effect but do not account
for the observed reductions [4]. Other explanationsinclude the scale of strain localization
in the penetrator and/or target (which may be affected by target layering) and material
sampling variation. To extend our reference correlations to a wider range of test scales,
the scaling approach proposed by Me-Bar [5] was applied to the Lanz-Odermatt function.

Me-Bar’s scaling methodology is an energy-based methodology. It is assumed that
energy isdissipated by volume effects and surface effects. It is not important to define the
specific processes involved, only to recognize that two classes of processes exist. Experi-
mental dataat two scales are used to deduce the rel ative contribution of these two classes.

The methodology assumes that the correlation of penetration and velocity is affected
by the surface-volume ratio. Thus this model involvesinserting a scale effect into the ve-
locity-dependence term of eg. (2). In Me-Bar’s application of his scaling methodology to
semi-infinite penetration he compared the velocity required to achieve a normalized pe-
netration depth (P/L) of unity with the required energy related to the square of this velo-
city. In a similar manner, the velocity parameter b in the Lanz-Odermatt function is the
velocity required to achieve anormalized penetration depth ot A/e. Defining a characteri-
stic velocity bo, which represents that obtained in an infinite scale experiment (in Me-
Bar’s scaling methodology scale effects disappear as test scale approaches infinity), we
obtain:

b= bo(1+K/D)V2 (3)
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Here K represents the characteristic length of the penetration process. Theratio K/D is
related to the relative contribution of surface effects and volume effects. Both bo and K
arefunctions of the aspect ratio of the penetrator aswell asthe material properties. Thear-
gument is that as the diameter of the penetrator decreases the relative fraction of energy
spent on surface effects increases. When D becomes less than K, these surface effects be-
gin to dominate. Substituting into eq. (1) yields a scale dependent form of the L-O func-
tion:

g= Aexp[—(bo / v)3(1+K/D)] (4)

Scale-dependent Generalized Lanz-Odermatt

The forms suggested above each add a third parameter to the standard L-O function
but for different reasons. Combining these two formsyieldsafour parameter fit:

g = Aexp[~(bo/V)S(1+ K / D)¥?] (5)

This function follows the same trends as the L-O function but provides greater flexi-
bility in the transition to high velocity behavior and a scal e dependence effect.

APPLICATION TO TUNGSTEN ALLOY PENETRATORS

Data were collected from a variety of sources[2,6,7,8] grouped into sets of common
aspect ratio of approximately 20 and 30. Targets are armor steel with anomina hardness
of 270 BHN. Projectiles are tungsten alloy with densities ranging from 17.3 to 17.8 g/cc.
Differences in target hardness and penetrator density were corrected using a method de-
rived from the dependence of normalized penetration on velocity [9].

A J Ap AR
g =g+ _ﬁ)_,_ (_g)l(_,[) Bl

Py M2 p R

Thederivative of the function wastaken from L-O fitsto data of common aspect ratio.

The Generalized L-O function (2) wasfit to sets of L/D 20 and 30 data. The resulting
parametersarelisted in Table 1. The L/D 20 correlation, which isbased on the largest col-
lection of data, is shown in Fig. 2 along with a L-O fit to the data (A=1.959, b=1.417
km/s). Systematic errors are present in both fits, particularly near the knee, but the greater
flexibility provided by the third parameter of the Generalized L-O fit reduces overpredic-
tion of the dataat hypervelocity. Better agreement could perhaps be obtained if additional
hypervelocity data were included. Both fits are reasonably good for laboratory scale pe-
netrators over awide velocity range, but even within the small range of test scales consi-
dered (1/4 to 1/2, when full scale refers to rods 25 mm in diameter) some scale depend-
enceisevident.

Both scale-dependent forms (4, 5) were fit to the data sets. The Scale-dependent L-O
form (4) had the same tendency to overpredict at the higher velocities and seemed to show
excessive scale dependence in the ordnance velocity range. Parameters obtained in the

) (6)
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fitsaregivenin Table 1. Thefit of the four parameter Generalized L-O function (5) to the
L/D 20 dataisshown in Fig. 3, whereit isplotted for several representative penetrator di-
ameters. Systematic errors persist, but the function follows the expected trend of scale ef-
fects diminishing with impact velocity.

Table 1. Empirical parametersfor tungsten long rods

L/D 20 L/D 30
Parameter Eq.2 Eq. 4 Eq. 5 Eq.2 Eq. 4 Eq.5
A 1.770 1.921 1.767 1.720 1.948 1.760
b (knmy/s) 1.357 1.165 1.147 1.522 1.196 1.186
c 2.497 - 2.403 2912 - 2.489
K (mm) - 3.533 3.066 - 4.872 4.037

OBSERVATIONS

In all fitsin which the exponent for velocity dependence was allowed to vary (the pa-
rameter c in the egs. 2 and 5), it exceeded the value of 2 assumed in the Lanz-Odermatt
function. While it is convenient to consider the characteristic velocity b as related to the
material strengths, the observed values of ¢ would suggest a strength term that decreases
with impact velocity, and hence strain rate, in contrast to data derived from material tests.
A more likely explanation is that multiple processes are involved, for example decelera-
tion of the penetrator at lower velocities or compressibility effects at the higher velocities.

The parameters given in Table 1 are for aleast-squares best fit over the entire region.
Other, dightly different values, will be desirable in some applications to obtain a best fit
over asmall velocity range. For example, in the region of greatest concern to our institute:
0.4to 6MJrods, L/D=30, 1.8<v<2.6 km/s, can obtain aslightly better datafit with A=1.7,
b=1.2 km/s, c=2.9, and K=3.5 mm.
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Figure 2. L-O and generalized L-Ofitsto L/D 20 data.
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Figure 3. Scale-dependent GLOfit to L/D 20 data.

The results from the scale-dependent fits suggest several trends, athough it is not
clear whether these are real or artifacts of the assumed scale dependence. Recall that the
scaling approach is based upon physical arguments that are then incorporated into an em-
pirical model.

First, as observed by Me-Bar, the characteristic length K increases with aspect ratio of
the penetrator. Thisimpliesthat scale effects are more pronounced for higher L/D rods, at
least when comparing rods of agiven diameter. More importantly, the values observed for
K are of the order of diameters used in laboratory-scale tests. This implies that care
should be taken when extrapol ating |aboratory-scal e resultsto “full-scale” predictions.

Secondly, the predictions suggest that scale effect persist at velocities extending into
the hypervelocity range. This effect isshown in Fig. 4, in which P/L for several diameters
of L/D 20 rodsisnormalized by that expected for an infinite diameter rod. The parameters
were taken from the fit of eq. (5) to the L/D 20 data. The figure suggests that even at
2.5 km/s a laboratory-scale penetrator (~5 mm diameter) achieves only 90% of the nor-
malized penetration that could be obtained with a sufficiently large diameter penetrator.

This second observation challenges the conventional wisdom that scal e effects are mi-
nimal at these higher velocities. However, there are so little large-scale, hypervel ocity
datathat the accuracy of the prediction cannot be assessed.

1120



Reference Correlations for Tungsten Long Rods Sriking Semi-Infinite Steel Targets

1.0

o
(o))

0.5 LR S L A B L
15 20 25 30 35 40 45
Impact Velocity, V (km/s)

Figure 4. Diameter effect on L/D 20 penetration.

CONCLUSIONS

Several function forms, all based on the Lanz-Odermatt (L-O) equation, have been
proposed for empirical correlations of semi-infinite penetration data. These equations
werethen fit to compiled data setsfor tungsten rods striking steel targets.

Converting the exponent for velocity dependence into a parameter atered the transi-
tion from low-velocity to high velocity. For the data sets considered this exponent was
consistent greater than the value of 2 assumed in the L-O equation. This causes a steeper
approach towards the asymptotic value A and asharper “knee” in the curve.

Scale-dependence was added using an energy-based empirical approach. Fits to the
data sets indicate that scale effects are more significant for higher aspect ratio rods and
suggest that scal e-effects extend into the hypervel ocity regime.
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