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This paper describes a recent effort to examine the perforation of stationary
oblique steel plates by hypervelocity tungsten-alloy cylindrical rod projectiles.
Specifically, simulations have been performed for L/D 10 projectiles against
one- and two-plate spaced targets inclined with respect to the projectile veloc-
ity vector. The plate thickness-to-rod diameter ratio t/D varied dightly as did
the plate spacing-to-thickness ratio tgap/t. For all simulations, /D U [1.2,1.6]
and tggp/t [1[0.7,1]. Two measures of fidelity are the normalized line-of-sight
perforation and the residual velocity. Archival test data are compared with the
numerical dataon thisbasis. The results presented reflect pre-impact aerodyna-
mic pitch and yaw in the test data but only pitch angle deviation in the numeri-
cal data. The simulation and test data are reasonably well correlated and the
data suggest that afavorable angle of attack orientation exists and may berela-
ted to the impact geometry. Differences in the perforation efficiency for one-
and two-plate targets are noted and erosion mechanisms are explored.

INTRODUCTION

This paper reports on a recent numerical study on the perforation of stationary, finite
thickness, oblique steel plates by slender tungsten-alloy cylindrical rod projectiles. One-
and two-plate spaced target configurations were examined in order to investigate their ef-
fect on the perforation and erosion process. The pre-impact geometry isindicated in Fig.
1 and was selected to closely replicate a set of tests recently conducted by Blesset al. [1].
In those tests scatter in the data were due in part to the impact yaw which can arise from
aerodynamic effects, sabot discard dynamics, or to the projectile’s natural modes. In the
corresponding simulations only deviationsin the aerodynamic pitch angle wereinvestiga-
ted. Theimpact velocities were exclusively in the hypervel ocity regime and all of the rod
projectileswere of similar finenessratio (L/D 10).

Woodward and Baldwin [2] have studied the oblique perforation of steel targets by
small steel core armor piercing projectiles. They varied the plate thickness and impact ve-
locity in an attempt to uncover the influence of the failure mode on oblique perforation
and to determine the critical obliquity anglefor defeat of the 0.30-cal. APM2 projectile. It
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was found that the mode of target failure was related to the penetration resistance-hard-
ness relationship. Specifically asthe target obliquity increased, the hardness at which adi-
abatic shear begins to cause a reduction in penetration resistance rises (in steel, from
about 350 HV t0 430 HV).

There have been several studies[3-5] of note in the area of normal and oblique perfo-
ration of finite thickness plates. Projectiles included steel and aluminum rods (including
spin-stabilized rifle rounds) against a variety of plates including aluminum, mild steel,
and carbon steel. Impact velocities were generally under 1 knvs and the intent of the expe-
rimental effort was to determine the velocity drop and orientation of the residual projec-
tile. Obliquity angles up to the point where the projectile ricocheted were studied. Forde
et al. [5] included L/D 10 tungsten-alloy rods in a reverse impact configuration. This
study was novel in that the rods were instrumented with manganin piezo-resistive stress
gauges in an attempt to study the stress wave propagation through the rod and to investi-
gate the material response. Additionally, this study for thin plateswith t/D of 0.5 was aug-
mented with hydrocode analysis.

Holmberg et al. [6] have conducted an experimental investigation with tungsten-alloy
rod projectiles and oblique steel plates at impact velocities of 1.5 and 2.5 knv/s. Their two-
part goal s were to determine the applicability of sub-scale experimentation and to investi-
gate the influence of hypervelocity impact. They concluded that sub-scale experimental
results were generally applicable and that hypervelocity rods were less affected with re-
spect to post-perforation qualities than were ordnance velocity rods. In anumerical study,
Liden et a. [7] found that tungsten projectiles were consumed to alarger extent for higher
impact velocities. Penetration and perforation have been described in an empirical man-
ner and for a specific set of experimenta conditions by Jeanquartier and Odermatt [8].
There, relationships derived from curve-fitting exercises are presented for the perforation
limit and residual length/velocity.

MODELING

The material elastic-plastic strength models are represented by the Johnson-Cook [9]
model. In general the material yield strength Y depends on strain and strain-rate hardening
and thermal softening terms asindicated by the following rel ationship:

Y = LA+B(E”)NJ[1+ Cing’][1-0"], ¢"<10°s" (1)

where A, B, C, N, and m are material constants. The equivalent plastic strain rate € P and
homol ogous temperature 0 are defined asfollows:

: 12 ., r-Tp
8‘” = ),p.e‘u., 9—
3 Cij €y T T 2

M R
where s'ﬁ is the plastic deviatoric strain rate tensor and Ty, and TR are the material melt
and room temperatures, respectively. Materia constants are summarizedin Table 1.
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Table 1. Johnson-Cook material constants.

A (GPa) B (GPa) c N m Tu (V)
Tungsten 1.35 0 0.06 1 1 0.1485
Steel 0.7922 0.5095 0.014 0.26 1.03 0.1545

EXPERIMENTS

Test data have been drawn from two sources in order to compare with the numerical
data. A complete description of the experimental setup may be found in the appropriate
references and only a brief summary is given here for sake of completeness. Bless et al.
[1] conducted fifteen shots of tungsten-alloy projectiles into oblique, one-and two-plate
spaced target configurations. Most of the projectileswere L/D 10 rods. Several velocities
were considered as well as several different tungsten aloys. These were primarily W-Ni-
Fe or Wi-Ni-Co. The target materials were primarily rolled homogeneous armor (RHA)
witht/ D [0 [0.7, 2.8] (although the bulk were for t/D 1.6). Pre-impact and post-perfora-
tion x-rays were taken in order to measure impact yaw, residua length, velocity, and
orientation. A comment on the impact yaw isin order. Since practically all impacts occur
with various amounts of unintended aerodynamic pitch and yaw, the experimental data
are sometimes represented with a single number — the ballistic yaw angle. Thisangleis
sometimes referred to here, incorrectly, astheimpact yaw angle. The magnitude of the ball-
istic yaw angle has been computed as if the aerodynamic pitch and yaw angles were the
cartesian components of a vector quantity. For small angles this approximation is more
than adequate. The sign of the resultant was taken from the sign of the pitch component
and corresponds with the simulation convention. Although out of place here a comment
on the numerical dataisalso in order. The angular deviation for the simulations was aero-
dynamic pitch, but is referred to as yaw in the text. It is hoped that no further confusion
will result from the use of thisterminal ballistic convention.

The experimental program of Holmberg et al. [6] was conducted with a two-stage
light gas gun. Pre-impact and post-perforation x-rays were taken to record the condition
of the rod. However no ballistic yaw datawasincluded in thereport. The L/D 15 projecti-
leswere of ahigh strength, sintered tungsten-alloy and the plates were armor steel having
aVickers hardness of 300. Two velocities (1.5, 2.5 kim/s) were chosen and two target obli-
quity angles (60°, 80°) were selected. The t/D ratio varied between 0.4-1.8 in a manner
such that the line-of-sight plate thickness was controlled.
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Figure 1. (left) Schematic of pre-impact geometry (not to scale). Pitch angle is indicated
(this is consistent with aerodynamic convention where yaw occurs in the orthogonal
plane).

Figure 2. (right) Line-of-sight perforation normalized by eroded rod length; V=2.6 knv/s
(nom.), L/D 10 tungsten-alloy projectile, 2-plate, spaced steel target, 6=65°.

RESULTS

Simulations representing the nominal test conditions [1] have been performed for the
impact, at 2.6 km/'s, of one- and two-plate spaced targetsincluding up to £6° of aerodyna-
mic pitch. For all cases here aresidua projectile emerges behind the target. The line-of-
sight perforation normalized by the eroded rod length is presented in Fig. 2 as afunction
of the ballistic yaw angle. Larger values of the ordinate are favorable since they indicate
lesser amounts of rod erosion, al other things being equal. The results indicate that for
o = 0°, erosion and line-of-sight perforation are roughly in balance, even including up to
—6° of impact yaw (i.e., pitch away from the plate exterior normal). However, the perfora-
tion efficiency does appear to be degraded when the impact yaw is positive. As may be
seen the correlation between the numerical and test data (circle and square symbols in
Fig. 2) isexcellent wheretest dataexists.

Additional simulations were performed to evaluate the effect of decreased gap spa-
cing (triangular symbolsin Fig. 2). Clearly, for the smaller gap selected here there is no
effective difference in the perforation efficiency. It should be mentioned that in [1] if the
residual rod is broken the reported length is the sum of al major segments at least a full
diameter D wide. The stated uncertainty in length measurements was + 0.25 D and since
the residua projectile often is broken, the error in the residual length measurement may
be larger than the stated uncertainty. It isworth noting that there is close agreement in the
residual velocities for the two data sets. For the two-plate data analyzed here, VR/V U
[0.84,0.93].

A trend identified by the computations suggests that the nose-up configuration (with
respect to the velocity vector) isslightly favorable for minimizing erosion. Thisis counter
to the results of Anderson et al. [10] who found that the nose-down impact configuration
was favorable for similar materials. Lower perforation times were identified as the signi-
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ficant factor in the impact of L/D 20 and 36 rod projectiles into finite thickness targets
with t/D 1.9. Materia plots for the two extreme cases (a = £6°) illustrates the phenome-
nology of the perforation process. For a = —6° (Fig. 3a—€), the materia plots show that
early time interaction includes the formation of a slot cut into the front face of the first
plate, Fig. 3a. Thistendsto impart a clockwise pitching moment to the rod (once the late-
ral interface moves behind the rod center-of-gravity) and also givesriseto avertical velo-
city component. For later times (Figs. 3b—), rod rotation tends to re-align the rod axis
along the original trajectory. Upon exit from the second plate and noting the slight upward
change in elevation (Fig. 3d), it can be shown that the late-time path through the target is
very similar to the o = 0° case. For a = +6° (Fig. 3fj), the case is little, but noticeably,
different. Slot formation occurs much later with a slot being cut into the rear face of the
front plate, Fig. 3g. The late-timeinteraction isinsufficient to completely re-align the rod
along the original trajectory. Also it can be seen that the counter-clockwise induced
pitching moment tends to pitch the rod into the plate and therefore away from the bulged
region, Fig. 3h. Upon exit (Fig. 3i), the residual rod is noticeably yawed. For this case the
pitching moment due to slot interaction and asymmetric exit conditions are of opposite
sense whereas in the case for a = —6° the pitching moments are of the same sense. It
should be mentioned that the effect of + 6° nose-down yaw on perforation efficiency is
small and amounts to roughly 0.5 D of increased erosion. Finaly it may appear from this
sequence of material plots (specificaly, Figs. 3c and 3h) that thereisasmall differencein
elapsed perforation time for the two extremum cases. However, the nominal interaction
dynamics for the two cases are different due to angle of attack and target obliquity issues
and therefore a comparison based simply on equivalent simulation time is not appropri-
ate. For therelatively thin plates considered here, the path anglesthrough the target are si-
milar.

In addition to angle-of-attack considerationsit is aso of interest to investigate the ef-
fect of impact velocity and of multiple, spaced-plates on erosion. Computations have
been performed for L/D 10 projectilesimpacting aone-plate target at 2.1 and 2.6 knmv/sand
one- and two-plate spaced steel targetsat 2.6 knvs. This dataalong with datafrom[1], [6]
are shown in Fig. 4. Thetest data[1] are for slightly larger /D and tgap/t ratio. The target
obliquity angle, however, correspondsto that numerically simulated. Also the single-plate
data of Holmberg et al. [6] are for different t/D values, L/D values, obliquity angles, and
impact velocities. Overall the numerical and test data are reasonably well correlated even
though no corrections have been applied to the datato account for the mismatch inimpact
conditionsor materials.
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Figure 3. Materia plotsfor theimpact of atungsten-alloy projectileinto a 2-plate, spaced
steel target at 2.6 km/s: (a—€) a =—6°, (f-) o = +6°.
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Figure 4. Line-of-sight perforation normalized by eroded rod length. 1- and 2-plate
spaced steel targets with 8 = 65° (unless otherwise noted); L/D 10, 15 tungsten-alloy pro-
jectiles.

The data suggests that the normalized line-of-sight perforation isonly mildly sensitive
to impact velocity (at least for the vel ocities considered here) asthe differencesin erosion
amount to approximately 0.25 D or less for the two impact velocities (circle and inverted
triangular symbols in Fig. 4). The data also suggests a synergistic effect with respect to
rod erosion in having the second plate close behind the first. Thisis demonstrated by the
higher perforation efficiencies across the yaw range when comparing the one- and two-
plate calculations (circle and square symbolsin Fig. 4). The difference in perforation effi-
ciency for o = 0° corresponds to roughly 0.7 D less erosion in the multi-plate case. That
is, for a simple scaling the predicted erosion for two single-plate targets spaced far
enough apart would be 0.7 D more than found in the two-plate, spaced target modeled
here. There are at |east two possible explanations, measurement uncertainty notwithstan-
ding. One may be that behind-armor-debris from the first plate precedes the rod into the
second plate (Fig. 5a). In thisway perforation isinitiated by debris rather than projectile.
A second plausible explanation may be related to the gap length between the plates. Since
the rod will continue to erode in the gap due to unequilibrated penetration and tail veloci-
ties, maximal erosion will not be attained if the gap length is insufficient to take advan-
tage of the transient residual stress state induced in the rod as a result of impact with the
first plate.
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Figure 5. Material plotsfor theimpact of atungsten-alloy projectileinto a 2-plate, spaced
steel target at 2.6 km/sand o = 0°; /D = 1.2, tgap/t = 0.69.
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Figure 6. Axial velocity datafor select positions along projectile; 2-plate, spaced steel tar-
getat 2.6 km/sand a =0°; t/D = 1.2, tgap/t = 0.69.

To explore this idea further we have examined plots of the projectile’s axial velocity
for select locations. The axia velocity component can be used to approximate the pene-
tration velocity if the projectile’slateral velocity component (here, due to oblique impact)
ismuch smaller than the former. This condition is satisfied here. Select axial velocity data
for the two-plate array are displayed in Fig. 6. It is not clear from this plot when the pro-
jectile breaks out from plate #1 and moves in the space between the plates. In fact it can
be seen in Figs. 5a—c that any calculation for between-plate erosion will not be objective.
Itisclear though that the penetration and tail velocities have not fully equilibrated before
the rod initiates impact with the next plate. It was estimated that for t between 35-37 us
the rod tip may be considered to be between plates. The between-plate erosion may be
computed by integrating therelation
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L=(u-v) 3)
where uisthe penetration velocity and visthetail velocity. The simpleresult
L= @-v)dt 4

isobtained if u(t) isassumed to vary linearly over thetimeinterval of interest. Henceli in
thisformulation isthe average penetration velocity over the relevant timeinterval. In this
way the between-plate erosion was estimated to be 0.12 D.

Next asimilar processis used to cal cul ate the behind-plate erosion. Breakout from the
rear plate (plate #2) isindicated in Fig. 5d. It can be shown that the interface pressure has
essentially dropped to zero for thistime. In Fig. 6 it can be seen that the residual penetra-
tion velocity is approximately 2.3 kim/s and fully equilibrates with the tail velocity after
approximately 12 ps. During this interval the behind-plate erosion was estimated from
Eg. (4) tobe 0.13 D. Thisestimateis consistent with that found for behind-plate erosionin
the one-plate (/D 1.2) target for Vo = 2.6 ks, Thusit seems apparent that the lack of full
equilibration for u and v between plates does not adequately address the differences in
perforation efficiencies for the one- and two-plate targets. Some other as yet undeter-
mined mechanism would seem to be the cause. Finally we note that the line-of-sight per-
foration efficiency for the one- and two-plate data of [1] show no such synergism as the
single-plate data are somewhat scattered. It is difficult to characterize the data of Holm-
berg et al. [6] since the impact yaw, if non-negligible, was not stated. We have ssimply
plottedit hereasif it werefor o = 0°.

CONCLUSIONS

Simulations have been performed for the through-penetration of oblique steel plates
by L/D 10 tungsten-alloy rod projectiles. Primary simulation parameters have included
impact yaw angle, number of plates, and impact velocity. Additionally some variationsin
plate thickness-to-rod diameter ratio and plate gap spacing have been included aswell. It
has been shown that the normalized line-of-sight perforation efficiency is only mildly
sensitive to impact velocity (at least for the two considered here). Furthermore it appears
that rod erosion for the closely spaced, multi-plate target is not simply ascalar multiple of
the single-plate case. Some synergism with respect to erosion in having the second plate
close behind the first was evident but it was demonstrated that this was not due to issues
related to between-plate erosion. It has also been shown that the perforation efficiency is
sensitive to small amounts of impact yaw. For late-times the nose-up case appears indis-
tinguishable from the a = 0° case due to early slot formation and asymmetric exit condi-
tions. In these cases the perforation efficiencies are similar. The nose-down case includes
pitching moments that are of opposite sense. These cases are more easily distinguishable
from the a = 0° case and also show some degradation in the perforation efficiency. The
numerical datagenerally compare favorably with archival test data conducted under simi-
lar conditions.
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